
Nijn/ONijn: A New Certification Engine for
Higher-Order Termination

Cynthia Kop, Deivid Vale, and Deivid Vale

International Workshop on Higher-Order Rewriting
Rome, Italy

July 04th, 2023

1/16



Summary

Higher-Order Rewriting

Problem Setting

Generating Proof Scripts

Conclusions

2/16



What do I mean by Higher-Order Rewriting?

Roughly, a style of simply-typed λ-calculae extended with a set of
type-annotated symbols.

R :=

{
mapF nil → nil

mapF x :: xs → (F x) :: mapF xs

map (λy .f s x) [ℓ1; . . . , ℓk ]

3/16



What do I mean by Higher-Order Rewriting?

Roughly, a style of simply-typed λ-calculae extended with a set of
type-annotated symbols.

R :=

{
mapF nil → nil

mapF x :: xs → (F x) :: mapF xs

map (λy .f s x) [ℓ1; . . . , ℓk ]

3/16



What do I mean by Higher-Order Rewriting?

Roughly, a style of simply-typed λ-calculae extended with a set of
type-annotated symbols.

R :=

{
mapF nil → nil

mapF x :: xs → (F x) :: mapF xs

map (λy .f s x) [ℓ1; . . . , ℓk ]

3/16



Termination Tools

▶ Proving termination is usually difficult to do in practice

▶ interpretation based techniques
▶ rule removal
▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques

▶ rule removal
▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques
▶ rule removal

▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques
▶ rule removal
▶ HORPO

▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques
▶ rule removal
▶ HORPO
▶ dependency pairs

▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques
▶ rule removal
▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques
▶ rule removal
▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind

▶ tools were built over the years to automate this search for
termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques
▶ rule removal
▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques
▶ rule removal
▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs
▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Termination Tools

▶ Proving termination is usually difficult to do in practice
▶ interpretation based techniques
▶ rule removal
▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs
▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition

4/16



Problem Setting

▶ bugs in termination provers are usually very difficult to find

▶ and it occurs often

Our goal

provide guarantees that the outputted (informal proof) of
termination tools (for higher-order rewriting) are correct

5/16



Problem Setting

▶ bugs in termination provers are usually very difficult to find

▶ and it occurs often

Our goal

provide guarantees that the outputted (informal proof) of
termination tools (for higher-order rewriting) are correct

5/16



Problem Setting

▶ bugs in termination provers are usually very difficult to find

▶ and it occurs often

Our goal

provide guarantees that the outputted (informal proof) of
termination tools (for higher-order rewriting) are correct

5/16



Problem Setting

▶ bugs in termination provers are usually very difficult to find

▶ and it occurs often

Our goal

provide guarantees that the outputted (informal proof) of
termination tools (for higher-order rewriting) are correct

5/16



What did we do?

We introduce Nijn/ONijn. It includes:

▶ the formalization engine

▶ a formalization in Coq of the theory of higher-order rewriting
▶ a formalization of higher-order polynomial interpretation

▶ the translation engine

▶ an OCaml program that turns the output of termination
checkers (like Wanda) into a Coq script.

6/16



What did we do?

We introduce Nijn/ONijn. It includes:

▶ the formalization engine
▶ a formalization in Coq of the theory of higher-order rewriting

▶ a formalization of higher-order polynomial interpretation

▶ the translation engine

▶ an OCaml program that turns the output of termination
checkers (like Wanda) into a Coq script.

6/16



What did we do?

We introduce Nijn/ONijn. It includes:

▶ the formalization engine
▶ a formalization in Coq of the theory of higher-order rewriting
▶ a formalization of higher-order polynomial interpretation

▶ the translation engine

▶ an OCaml program that turns the output of termination
checkers (like Wanda) into a Coq script.

6/16



What did we do?

We introduce Nijn/ONijn. It includes:

▶ the formalization engine
▶ a formalization in Coq of the theory of higher-order rewriting
▶ a formalization of higher-order polynomial interpretation

▶ the translation engine

▶ an OCaml program that turns the output of termination
checkers (like Wanda) into a Coq script.

6/16



What did we do?

We introduce Nijn/ONijn. It includes:

▶ the formalization engine
▶ a formalization in Coq of the theory of higher-order rewriting
▶ a formalization of higher-order polynomial interpretation

▶ the translation engine
▶ an OCaml program that turns the output of termination

checkers (like Wanda) into a Coq script.

6/16



Mandatory picture, otherwise the talk is boring. . .

7/16



Mandatory picture, otherwise the talk is boring. . .

8/16



Mandatory picture, otherwise the talk is boring. . .

9/16



Nijn Formalization Statistics

spec proof comments

5497 1985 272 total

10/16



Generation of proof-scripts — input TRS

11/16



Generation of proof-scripts — Wanda’s Output

12/16



Generation of proof-scripts — Wanda’s Output

13/16



ONijn’s Output

14/16



ONijn’s Output

14/16



ONijn’s Output

14/16



ONijn’s Output

14/16



ONijn’s Output

14/16



ONijn Translator Statistics

15/16



Conclusion

▶ We made a formalization with the basic results of higher order
rewriting.

▶ We also formalized the polynomial method.

▶ We made an OCaml program that turned the output of a
termination checker into a Coq script.

▶ The certification method is effective: we could verify the
output of Wanda on a set of 46 problems.

16/16



Conclusion

▶ We made a formalization with the basic results of higher order
rewriting.

▶ We also formalized the polynomial method.

▶ We made an OCaml program that turned the output of a
termination checker into a Coq script.

▶ The certification method is effective: we could verify the
output of Wanda on a set of 46 problems.

16/16



Conclusion

▶ We made a formalization with the basic results of higher order
rewriting.

▶ We also formalized the polynomial method.

▶ We made an OCaml program that turned the output of a
termination checker into a Coq script.

▶ The certification method is effective: we could verify the
output of Wanda on a set of 46 problems.

16/16



Conclusion

▶ We made a formalization with the basic results of higher order
rewriting.

▶ We also formalized the polynomial method.

▶ We made an OCaml program that turned the output of a
termination checker into a Coq script.

▶ The certification method is effective: we could verify the
output of Wanda on a set of 46 problems.

16/16


	Higher-Order Rewriting
	Problem Setting
	Generating Proof Scripts
	Conclusions

