Nijn/ONijn: A New Certification Engine for
Higher-Order Termination

Cynthia Kop, Deivid Vale, and Deivid Vale

International Workshop on Higher-Order Rewriting
Rome, Italy
July 04th, 2023

1/16

Summary

Higher-Order Rewriting
Problem Setting
Generating Proof Scripts

Conclusions

2/16

What do | mean by Higher-Order Rewriting?

Roughly, a style of simply-typed A-calculae extended with a set of
type-annotated symbols.

3/16

What do | mean by Higher-Order Rewriting?

Roughly, a style of simply-typed A-calculae extended with a set of
type-annotated symbols.

R map F nil — nil
" |mapFx:xs— (Fx): mapF xs

3/16

What do | mean by Higher-Order Rewriting?

Roughly, a style of simply-typed A-calculae extended with a set of
type-annotated symbols.

R map F nil — nil
" |mapFx:xs— (Fx): mapF xs

map (Ay.fsx)[€1;..., 0]

3/16

Termination Tools

» Proving termination is usually difficult to do in practice

4/16

Termination Tools

» Proving termination is usually difficult to do in practice
P interpretation based techniques

4/16

Termination Tools

» Proving termination is usually difficult to do in practice

P interpretation based techniques
» rule removal

4/16

Termination Tools

» Proving termination is usually difficult to do in practice

P interpretation based techniques
» rule removal
» HORPO

4/16

Termination Tools

» Proving termination is usually difficult to do in practice

P interpretation based techniques
» rule removal
» HORPO

» dependency pairs

4/16

Termination Tools

» Proving termination is usually difficult to do in practice

P interpretation based techniques

» rule removal

» HORPO

» dependency pairs
»

4/16

Termination Tools

» Proving termination is usually difficult to do in practice

P interpretation based techniques
» rule removal

» HORPO

» dependency pairs

| 2

> most termination techniques are built with automation in mind

4/16

Termination Tools

» Proving termination is usually difficult to do in practice

P interpretation based techniques
» rule removal

» HORPO

» dependency pairs

| 2

> most termination techniques are built with automation in mind

» tools were built over the years to automate this search for
termination proofs

4/16

Termination Tools

» Proving termination is usually difficult to do in practice

P interpretation based techniques
» rule removal

» HORPO

» dependency pairs

| 2

> most termination techniques are built with automation in mind

» tools were built over the years to automate this search for
termination proofs

> AProVE, TTTo, NaTT, SOL, Wanda, ...

4/16

Termination Tools

» Proving termination is usually difficult to do in practice

P interpretation based techniques
» rule removal
» HORPO

» dependency pairs
> ..

> most termination techniques are built with automation in mind

» tools were built over the years to automate this search for
termination proofs

> AProVE, TTTo, NaTT, SOL, Wanda, ...

» they compete annually in the termination competition

4/16

Problem Setting

» bugs in termination provers are usually very difficult to find

5/16

Problem Setting

» bugs in termination provers are usually very difficult to find

» and it occurs often

5/16

Problem Setting

» bugs in termination provers are usually very difficult to find

» and it occurs often

5/16

Problem Setting

» bugs in termination provers are usually very difficult to find

» and it occurs often
Our goal

provide guarantees that the outputted (informal proof) of
termination tools (for higher-order rewriting) are correct

5/16

What did we do?

We introduce Nijn/ONijn. It includes:

P the formalization engine

6/16

What did we do?

We introduce Nijn/ONijn. It includes:

P the formalization engine
» a formalization in Coq of the theory of higher-order rewriting

6/16

What did we do?

We introduce Nijn/ONijn. It includes:

P the formalization engine

» a formalization in Coq of the theory of higher-order rewriting
» a formalization of higher-order polynomial interpretation

6/16

What did we do?

We introduce Nijn/ONijn. It includes:

P the formalization engine

» a formalization in Coq of the theory of higher-order rewriting
» a formalization of higher-order polynomial interpretation

P the translation engine

6/16

What did we do?

We introduce Nijn/ONijn. It includes:

P the formalization engine

» a formalization in Coq of the theory of higher-order rewriting
» a formalization of higher-order polynomial interpretation

P the translation engine

» an OCaml program that turns the output of termination
checkers (like Wanda) into a Coq script.

6/16

Mandatory picture, otherwise the talk is boring. ..

The translator!

(@] :
é‘ Input TRS
Q¥ Terminate?

Wanda Pen-and-paper ONun

]

Valid Proof!

Proof can't be validated

7/16

Mandatory picture, otherwise the talk is boring. ..

Input TRS 5

Terminate?

@ :
<V

8/16

Mandatory picture, otherwise the talk is boring. ..

O
O
@ m’ - MAYBE » \w/‘
QP Terminate? v

Wanda

9/16

Nijn Formalization Statistics

spec proof comments
5497 1985 272 total

10/16

Generation of proof-scripts — input TRS

nil : list
cons : (a * list) — 1list
map : (list * a — a) — list

:a
. list
ta = a

map(nil, F) = nil
map(cons(x, 1), F) = cons(F * x, map(l, F))

11/16

Generation of proof-scripts — Wanda's Output

Mixed_HO_10_map.onijn X
experiments > ho_poly > Mixed_HO_10_map.onijn
You, 4 months ago | 1 author (You)

1 YES

2 Signature: [

3 cons : a — list — 1list ;

4 map : list = (a = a) — 1list ;
5 nil : list

6 1

7

8 Rules: [

9 map nil F = nil ;

10 map (cons X Y) G = cons (G X) (map Y G)
11]

12/16

Generation of proof-scripts — Wanda's Output

12

13 Interpretation: [

14 J(cons) = Lam[y@;y1].3 + 2%yl ;

15 J(map) = Lam[y@;G1].3+*y0 + 3%y0*G1(y0) ;
16 J(nil) = 3

17 1

18

19 Removed: [

20 map nil F = nil ;

21 map (cons X Y) G = cons (G X) (map Y G)
22 1

23

13/16

ONijn’s Output

coq_certificates > [] Mixed_HO_10_map.v
Require Import Nijn.Nijn.
Open Scope poly_scope.

Inductive base_types :=

| ca

| Clist.

Global Instance decEq_base_types : decEq base_types.
Proof.

decEq_finite.

Defined.

Definition a :=
Base Ca.
Definition list :=
Base Clist.

ONijn’s Output

Inductive fun_symbols :=
| Tcons
| Tmap

| Tnil.
decEq fun_symbols.

Global Instance decEq_fun_symbols :

Proof.
decEq_finite.
Defined.

14/16

ONijn’s Output

Definition fn_arity fn_symbols :=
match fn_symbols with
| Tcons = a » list » list
| Tmap = list > (a > a) > list
| Tnil = list
end.

Definition cons {C} : tm fn_arity C _ :=
BaseTm Tcons.

Definition map {C} : tm fn_arity C _ :
BaseTm Tmap.

Definition nil {C} : tm fn_arity C _ :
BaseTm Tnil.

14/16

ONijn’s Output

Program Definition rule_0 :
make_rewrite
D
(map - nil - -V 0)
nil.
Program Definition rule_1 :
make_rewrite
(_lr_ll_ll ')_
(map *+ (cons « V@ « V1) V2)
(cons «+ (V2 VOQ): (map - V1-: V2)).

Definition trs :=
make_afs
fn_arity
(rule_@ :: rule_1 :: List.nil).

ONijn’s Output

Definition map_fun_poly fn_symbols : poly : (arity trs fn_symbols) :=
match fn_symbols with

| Tcons =

AP

AP let yl1 := P_var Vz in

(to_Poly (P_const 3 + P_const 2 * y1))

| Tmap =

AP let y0 := P_var (Vs Vz) in

AP let G1 := P_var Vz in

(to_Poly (P_const 3 * y0 + P_const 3 * y@ *x (G1 P (y0))))
| Tnil =

(to_Poly (P_const 3))

end.

Definition -trs_isSN : isSN trs.

Proof.

solve_poly_SN map_fun_poly.

Qed.

ONijn Translator Statistics

Languages
language files code comment blank total
OCaml 15 880 154 220 1,254
OCaml Interface 10 173 463 154 790
OCamldoc 1 108 0 32 140
OCamllex 1 16 32 3 51
Menhir 1 107 10 30 147
Shell Script 1 57 5 10 72

15/16

Conclusion

» We made a formalization with the basic results of higher order
rewriting.

16/16

Conclusion

» We made a formalization with the basic results of higher order
rewriting.

> We also formalized the polynomial method.

16/16

Conclusion

» We made a formalization with the basic results of higher order
rewriting.
> We also formalized the polynomial method.

» We made an OCaml program that turned the output of a
termination checker into a Coq script.

16/16

Conclusion

» We made a formalization with the basic results of higher order
rewriting.
> We also formalized the polynomial method.

» We made an OCaml program that turned the output of a
termination checker into a Coq script.

» The certification method is effective: we could verify the
output of Wanda on a set of 46 problems.

16/16

	Higher-Order Rewriting
	Problem Setting
	Generating Proof Scripts
	Conclusions

