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What do I mean by Higher-Order Rewriting?

Roughly, a style of simply-typed λ-calculae extended with a set of
type-annotated symbols.

R :=

{
mapF nil → nil

mapF x :: xs → (F x) :: mapF xs

map (λy .f s x) [ℓ1; . . . , ℓk ]
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Termination Tools

▶ Proving termination is usually difficult to do in practice

▶ interpretation based techniques
▶ rule removal
▶ HORPO
▶ dependency pairs
▶ . . .

▶ most termination techniques are built with automation in mind
▶ tools were built over the years to automate this search for

termination proofs

▶ AProVE, TTT2, NaTT, SOL, Wanda, . . .

▶ they compete annually in the termination competition
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Problem Setting

▶ bugs in termination provers are usually very difficult to find

▶ and it occurs often

Our goal

provide guarantees that the outputted (informal proof) of
termination tools (for higher-order rewriting) are correct
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What did we do?

We introduce Nijn/ONijn. It includes:

▶ the formalization engine

▶ a formalization in Coq of the theory of higher-order rewriting
▶ a formalization of higher-order polynomial interpretation

▶ the translation engine

▶ an OCaml program that turns the output of termination
checkers (like Wanda) into a Coq script.
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Mandatory picture, otherwise the talk is boring. . .
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Nijn Formalization Statistics

spec proof comments

5497 1985 272 total
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Generation of proof-scripts — input TRS
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Generation of proof-scripts — Wanda’s Output

12/16



Generation of proof-scripts — Wanda’s Output
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ONijn’s Output
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ONijn’s Output
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ONijn Translator Statistics
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Conclusion

▶ We made a formalization with the basic results of higher order
rewriting.

▶ We also formalized the polynomial method.

▶ We made an OCaml program that turned the output of a
termination checker into a Coq script.

▶ The certification method is effective: we could verify the
output of Wanda on a set of 46 problems.
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