
Tuple Interpretations for Higher-Order Complexity
Cynthia Kop
Department of Software Science, Radboud University Nijmegen, The Netherlands

Deivid Vale
Department of Software Science, Radboud University Nijmegen, The Netherlands

Abstract
We present a style of algebra interpretations for many-sorted and higher-order term rewriting based
on interpretations to tuples; intuitively, a term is mapped to a sequence of values identifying for
instance its evaluation cost, size and perhaps other values. This could give a more fine-grained
notion of the complexity of a term or TRS than notions such as runtime or derivational complexity.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Complexity, higher-order term rewriting, many-sorted term rewriting, poly-
nomial interpretations, weakly monotonic algebras

Funding The authors are supported by the NWO TOP project “ICHOR”, NWO 612.001.803/7571.

1 Introduction

In the study of complexity of term rewriting systems, it is common to consider termination
techniques: if a TRS can be proved terminating by a certain technique, this typically implies
a specific bound on the number of steps that may be needed to reduce a term in that TRS
to normal form (see, e.g., [2, 4, 5, 7]). Some approaches (e.g., [5, 7]) consider interpretations
of terms s. Interpretations impose a natural bound on reduction length for given terms.

By their nature, interpretations to natural numbers do not tend to give tight bounds.
Consider for example the term rewriting system implementing addition, which is given
by the rules add(x, 0) → x and add(x, s(y)) → s(add(x, y)). An interpretation would need
to be monotonic, and have J`K > JrK for both rules. This leads to for instance: J0K = 0,
Js(x)K = JxK + 1 and Jadd(x, y)K = JxK + 2 · JyK + 1. With these choices, we indeed have:

Jadd(x, 0)K = JxK + 1 > JxK = JxK
Jadd(x, s(y))K = JxK + 2 · JyK + 2 > JxK + 2 · JyK + 1 = Js(add(x, y))K

But Jadd(sn(0), sm(0))K = n+ 2m+ 1, even though only n+m+ 1 steps can be done before
reaching normal form. This is because the interpretation captures not only the reduction
cost, but also the size of the normal form. This is not problematic for the example above,
because the result is still linear runtime complexity. However, for exponential bounds, the
consequences are more severe: consider O(2n) versus O(23n) = O(8n). And particularly
when considering higher-order term rewriting, exponential bounds are often very relevant.

The situation could be improved by splitting interpretations into separate cost and size
components, as was done for conditional rewriting in [6]. For instance, in the example above we
could take Jadd(x, y)Ksize = JxKsize+JyKsize and Jadd(x, y)Kcost = JxKcost+JyKcost+JyKsize+1.
More generally, we could interpret terms to tuples of arbitrary size. This essentially generalises
matrix interpretations [7] as well, by mapping terms to a vector but not imposing restrictions
on the shape of interpretation functions. This could be particularly useful for many-sorted and
higher-order term rewriting systems, where the choice of tuple length may be type-dependent.

The present short paper explores the ideas above. It documents work in progress with
the aim to help establish a more fine-grained notion of complexity for term rewriting—which
captures both time, space and perhaps other properties such as the shape of normal forms.
The technique we develop may also be useful for resource analysis of higher-order programs.

https://orcid.org/0000-0002-6337-2544
https://orcid.org/0000-0003-1350-3478

2 Tuple Interpretations for Higher-Order Complexity

2 Preliminaries: many-sorted and higher-order term rewriting

We assume familiarity with first-order term rewriting. In many-sorted rewriting, all function
symbols have a sequence of input sorts, and an output sort; and terms must be well-typed.

I Example 1. The TRS R+, for arithmetic and lists, has six function symbols: 0 :: nat,
nil :: list, s :: nat=⇒nat, add :: nat× nat=⇒nat, mult :: nat× nat=⇒nat, dList :: list→ list, and
cons :: nat× natlist→ natlist. It is given by rules of sort nat and list, as follows:

add(x, 0)→ x d(0)→ 0
add(x, s(y))→ s(add(x, y)) d(s(x))→ s(s(d(x)))

mult(x, 0)→ 0 dList(nil)→ nil
mult(x, s(y))→ add(x,mult(x, y)) dList(cons(x, q))→ cons(d(x), dList(q))

For higher-order rewriting, we use a formalism where function symbols take a sequence
of simple types as input (i.e., generated from a set B of sorts and a right-associative binary
type constructor ⇒) and a sort as output; term formation allows for function application
(f(s1, . . . , sm) : ι if f : σ1 × · · · × σm=⇒ι is a symbol and each si : σi), as well as application
(i.e., if s : σ⇒τ and t : σ than s t : τ) and λ-abstraction as in the simply-typed λ-calculus.
The β-reduction rule (λx.s) t→ s[x := t] is always included in the reduction relation →R.

I Example 2. LetRfold be the higher-order TRS with symbols nil :: list, cons :: nat× list=⇒list,
map :: (nat⇒nat)× list=⇒list and foldl :: (nat⇒nat⇒nat)× nat× list=⇒nat and rules:

foldl(f, z, nil)→ z map(f, nil)→ nil
foldl(f, z, cons(x, q))→ foldl(f, (f z x), q) map(f, cons(x, q))→ cons(f x,map(f, q))

3 First-Order type-based interpretation

It is common in the rewriting literature to use termination proofs to assess the difficulty of
rewriting a term to a normal form [2, 5]. For example, in [5], Hofbauer gives a first upper-
bound for the derivational complexity of first-order TRS’s with polynomial interpretation as
termination proofs. This technique has been extended to other termination proofs as well [2].
Polynomial interpretations are a form of algebra interpretations:

I Definition 3 (adapted from [8]). An algebra A for many-sorted first-order terms consists
of a mapping from each sort ι ∈ B to a well-founded set (Aι, >ι,≥ι) together with an
interpretation function J which assigns to each f :: ι1 × · · · × ιm=⇒κ ∈ F a monotonic
function Jf ∈ Aι1 → · · · → Aιm → Aκ (monotonic: Jf(. . . , x, . . .) > Jf(. . . , y, . . .) if x > y).

If α is a mapping from variables of sort ι to Aι, term interpretation is defined recursively
with JxKJ

α = α(x) and Jf(s1, . . . , sm)KJ
α = Jf(Js1KJ

α , . . . , JsmKJ
α). We usually omit α and J

and just write JsK. Termination follows if J`KJ
α > JrKJ

α for all α and a fixed J .

If each Aι = N, then JsK gives a worst-case boundary on the number of rewriting steps
starting from s (as observed in the introduction); this can be used to bound the number of
steps starting from an arbitrary term of size n, depending on the shape of the interpretation.

As an alternative, we consider interpretations with Aι = NKι . We let (n1, . . . , nKι) ≥
(n′

1, . . . , n
′
Kι

) if each ni ≥ n′
i, and (n1, . . . , nKι) > (n′

1, . . . , n
′
Kι

) if n1 > n′
1 and each ni ≥ n′

i.
For example, we let Anat = N2 and Alist = N3. Intuitively, the first component in both cases
indicates “cost”: the number of steps needed to reduce a term to normal form. The second
component of Anat represents the size of the natural number, and the second and third
component of Alist represent the list length and maximum element size respectively.

C. Kop and D. Vale 3

I Example 4. Consider the signature of Example 1. We set its interpretation as follows
below, where sc is syntactic sugar for JsK1 (the cost component of s), ss and sl are JsK2 (the
size or length component) and sm is JsK3 (the component for maximum element size).

J0K = 〈0, 1〉 JnilK = 〈0, 0, 0〉
Js(x)K = 〈xc, xs + 1)〉 Jcons(x, q)K = 〈xc + qc, ql + 1,max(xs, qm)〉
Jd(x)K = 〈1 + xc + xs, 2 · xs〉 JdList(q)K = 〈1 + qc + ql · (2 + qm), ql, 2 · qm〉

Jadd(x, y)K = 〈1 + xc + yc + ys, xs + ys〉
Jmult(x, y)K = 〈1 + xc + yc + xs · (2 + xc + xs · ys), xs · ys〉

We can easily check that J`K > JrK for all rewrite rules `→ r; that is, there is a strict decrease
in the “cost” component and a weak decrease (with ≥) in the others. For example:

JdList(cons(x, q))K
= 〈1 + (xc + qc) + (ql + 1) · (2 + max(xs, qm)), ql + 1, 2 ·max(xs, qm)〉
= 〈3 + xc + qc + max(xs, qm) + ql · (2 + max(xs, qm)), ql + 1, 2 ·max(xs, qm)〉
> 〈2 + xc + qc + xs + ql · (2 + qm), ql + 1,max(2 · xs, 2 · qm)〉
= 〈(1 + xc + xs) + (1 + qc + ql · (2 + qm)), ql + 1,max(2 · xs, 2 · qm)〉
= Jcons(d(x), dList(q))K

Note that our interpretation method has some similarities with matrix interpretations [3], as
each term is associated to an n-tuple. However, the interpretation function is not restricted
to linear multivariate polynomials, allowing interpretations such as those for cons and mult.
Tuple interpretations give information on more than just the cost of evaluating a term.

I Example 5 (Bounds for arithmetic). We have JdList(cons(s3(0), cons(s1(0), nil)))K = 〈11, 2, 6〉.
Given the way the interpretation was constructed, this implies that an evaluation to normal
form takes at most 11 steps, and the normal form has length at most 2 and a greatest element
at most s6(0). The cost component is not tight: it only takes 8 steps to evaluate the term
(11 is the maximum number of steps to evaluate dList(q) for any constructor-list q of length
2 and with greatest element s3(0)). The other two values are tight.

4 Higher-order type-based interpretations

In first-order term rewriting, the complexity of a TRS is often measured as runtime or
derivational complexity: both measures are parametrised by the size of an initial term. This
is not a good measure for terms with immediate subterms of higher-order type: the behaviour
of such subterms on given arguments should be considered, as the next example shows.

I Example 6. ConsiderR+∪Rfoldl. The evaluation cost of a term foldl(F, t, q) depends almost
completely on the behaviour of the functional subterm F , and not only on its evaluation cost.
If F is λx.λy.d(x)—so a size-increasing term—evaluating foldl(F, t, q) takes exponentially
many steps, even though d runs in linear steps and F is executed only |q| times. Thus,
higher-order rewriting in particular is a natural place to separate cost and size.

Algebra interpretations for higher-order rewriting were defined in [8]. Essentially, the
interpretations of Definition 3 are extended by letting Aσ⇒τ be the set of weakly monotonic
functions from Aσ to Aτ (that is, f(. . . , x, . . .) ≥τ f(. . . , y, . . .) if x ≥σ y), with >σ⇒τ

and ≥σ⇒τ being point wise comparisons. While the author of [8] and followup work used
N for Aι (with ι ∈ B), the method needs no modification when tuple interpretations are
used instead. For elements of Aι⇒σ, we moreover limit interest to functions f such that
always f(x1, x2 . . . , xn)i = f(x′

1, x2, . . . , xn)i for i > 1; that is, the size, length and “greatest
element” components do not depend on the cost component (but may depend on each other).

4 Tuple Interpretations for Higher-Order Complexity

I Example 7. Let Anat = N2 and Alist = N3 as before, and assume cons and nil are interpreted
as in Example 4. We can use the following interpretation for map:

Jmap(f, q)K = 〈 1 + qc + 2 · ql + (ql + 1) · JfK(qc, qm)1, ql, JfK(qc, qm)2 〉

This expresses that the list length is retained (as the length component is just ql), the greatest
element of the result map is bounded by the value of f on the greatest element of q, and
the evaluation cost is mostly expressed by a linear number of f steps. For Jmap(λx.d(x), q)K
we obtain 〈1 + qc + 2 · ql + (ql + 1) · (1 + qc + qm), ql, 2 · qm〉. This is slightly larger than
JdList(q)K (which evaluates to the same term), but has a similar order of magnitude.

For foldl, we can use an interpretation like the one below, where Qg,h,a,m : N2 → N2 is
defined as follows: Qg,h,a,m(c, s) = 〈c+ a+ g(c, s, a,m), h(s,m)〉; the superscript denotes
repeated function application (e.g., Q3(x) = Q(Q(Q(x)))) and + indicates placewise addition.

Jfoldl(f, z, q)K = 〈1 + ql + qc, 0〉+ JfK(〈0, 0〉) +Qql
g,h,qc,qmmax

(JzK)

Where g := λxc, xs, yc, ys.JfK(〈xc, xs〉 , 〈yc, ys〉)1 and h := λxs, ys.JfK(〈0, xs〉 , 〈0, ys〉)2 (re-
spectively, the cost and size parts of JfK. This is much harder to read, but can still be used
to gain an idea of the complexity for specific (groups of) instantiations of f .

5 Discussion

This paper aims to start a line of research for termination and complexity analysis of
higher-order term rewriting. We abandon the classical notions of derivational and runtime
complexity that are often used for this task, since these do not naturally match the behaviour
of higher-order terms. We separate cost and size (and other structural properties) in our
analysis, which is a similar idea (but very different angle) to analysis using sized types [1].

In the future, we plan to further develop the method, and find interpretations to other
classic higher-order functions that often occur as part of larger systems. We aim to investigate
properties of the technique, and hope to find connections both in the broader area of
computational complexity and in the analysis of term rewriting. We are also interested in
automating the construction of interpretations, and in applications in functional programming.

References
1 M. Avanzini and U. Dal Lago. Automating sized-type inference for complexity analysis. In

Proc. ICFP, ACM, page Article 43, 2017.
2 M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. FLOPS, volume 4989

of LNCS, pages 130–146, 2008.
3 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination

of term rewriting. JAR, 40:195–220, 2008.
4 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair

method. In Proc. IJCAR 08, volume 5195 of LNCS, pages 364–379, 2008.
5 D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In Proc.

RTA, volume 355 of LNCS, pages 167–177, 1989.
6 C. Kop, A. Middeldorp, and T. Sternagel. Complexity of conditional term rewriting. LMCS,

13(1), 2017.
7 G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on

matrix and context dependent interpretations. In Proc. FSTTCS 08, volume 2 of LIPIcs,
pages 304–315, 2008.

8 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of
Utrecht, 1996.

	Introduction
	Preliminaries: many-sorted and higher-order term rewriting
	First-Order type-based interpretation
	Higher-order type-based interpretations
	Discussion

