
deivid vale

O N S O LV I N G N O M I N A L D I S U N I F I C AT I O N
P R O B L E M S

[June 16, 2021 at 14:22 – v1.2.1]

[June 16, 2021 at 14:22 – v1.2.1]

O N S O LV I N G N O M I N A L D I S U N I F I C AT I O N P R O B L E M S

deivid vale

A dissertation
submitted and presented to the Department of Mathematics

of University of Brasília
in partial fulfillment of the requirements for the Degree of

Master of Mathematics

v1.2.1

[June 16, 2021 at 14:22 – v1.2.1]

On Solving Nominal Disunification Problems
Copyright © 2019 by Deivid Vale

supervisor:
Daniele Nantes

location:
Brasília – Brazil

[June 16, 2021 at 14:22 – v1.2.1]

I dedicate this work to Bruno Caxito, Cássia Cristiane, Tiago Araújo,
Maria Lúcia, Marina Sousa (the best friends I could ever wish for),

Danubia Vale, Thiago Vale, and Johne Vale (the best siblings I could
ever wish for), Edna Silva (my dear girlfriend), and to my mother

who is the genesis of it all.

“A morte pode sorrir para você de muitas maneiras, mas sorrir de volta cabe
a você decidir. Em um lugar como aquele, era possível ver sorrisos que iam de

orelha a orelha, mas para vê-los era necessário fechar os olhos . . . ”
Bruno Caxito

[June 16, 2021 at 14:22 – v1.2.1]

[June 16, 2021 at 14:22 – v1.2.1]

A B S T R A C T

An extension of first-order disunification problems is proposed by
taking into account binding operators according to the nominal ap-
proach. In this approach, bindings are implemented through nominal
atoms used instead of binding variables and renaming of atoms are
implemented by atom permutations. In the nominal setting, unifica-
tion problems consist of equational questions of the form s ≈α

? t (read:
is s α-equivalent to t?) considered under freshness problems a#?t (read:
is a fresh for t?) that restrict solutions by forbidding free occurrences
of atoms in the instantiations of variables.

In addition to equational and freshness problems, nominal disuni-
fication problems also include nominal disunification constraints in
the form of disequations s 6≈α

? t (read: is s α-different to t?) and their
solutions consist of pairs of a substitution σ and a finite set of freshness
constraints in the form of a#X such that under these restrictions the
σ-instantiation of the equations, disequations, and freshness problems
holds.

By re-using nominal unification techniques, it is shown how to
decide whether two nominal terms can be made different modulo α-
equivalence. This is done by extending previous results on first-order
disunification and by defining the notion of solutions with exceptions in
the nominal syntax. A discussion on the semantics of disunification
constraints is also given.

vii

[June 16, 2021 at 14:22 – v1.2.1]

[June 16, 2021 at 14:22 – v1.2.1]

I do not aim with my hand; he who aims with his hand has forgotten the face
of his father.

I aim with my eye.
I do not shoot with my hand; he who shoots with his hand has forgotten the

face of his father.
I shoot with my mind.

I do not kill with my gun; he who kills with his gun has forgotten the face of
his father.

I kill with my heart.

King, Stephen — The Gunslinger

A C K N O W L E D G M E N T S

I want to express my gratitude to everyone in my life that made this
dissertation possible. Enumerating all of you is impossible; notwith-
standing, I shall try my best to do so.

I am grateful to my advisor, Daniele Nantes, for having dedicated
so many years to teach me how to study and appreciate mathematics.
You have shown me the beauty of solving problems and shared with
me the excitement of learning something new. Thank you.

I am grateful to my mother, Cleonice de Fátima, the only person in
the entire world that dared to sacrifice her education in praise of mine.
All that is good in me began with you, mother.

I thank my family that has contributed to this work mostly by
making my life worth living. Especially my stepfather, Doraci Dias,
for being the father I did not have. Without your support, I would
never be able to move to another state to focus only on studying
mathematics.

Many thanks to my girlfriend, Edna, for spending time with me and
making my life better. Without your constant support, this journey
could have been much harder. I am incomplete without you.

I thank my friends outside academia for providing me enough dis-
traction from mathematics. Especially, Bruno Caxito. Thanks, Caxito,
for all the good things that arise from a good friendship.

Many thanks go to friends embedded in academic life: Bruna Nunes,
Cláudia Orduz, Dino da Silva Sauro, Gabriel Bufolo, Gabriel Silva —
the Maximal Element, for every ball with positive radius centered in
Edna’s head—, Junior Cabiludo, and George Leitão.

I thank the professors in the department of mathematics for the
excellent education provided over the years. Its worth mention Célius
Magalhães and Luciana Ávila for having participated in my academic
and personal life since the very beginning of this story.

I give my thanks to the examination committee for the valuable
suggestions and improvements on this work. An especial thanks to
Professors Mauricio Ayala and Maribel Fernández for the participation
in the research done in this dissertation.

ix

[June 16, 2021 at 14:22 – v1.2.1]

Lastly, but unquestionably not least important, I give my thanks to
the millions of Brazilians who day after day paid their taxes to fund
my education, even not having any choice for it. I shall give my best
to return your investments in the form of teaching future generations
and perhaps creating scientific knowledge to advance our society.

x

[June 16, 2021 at 14:22 – v1.2.1]

C O N T E N T S

1 introduction 1

2 nominal abstract syntax 5

2.1 Nominal Terms 5

2.1.1 Substitutions and Permutation Action 6

2.2 Equality and Derivability 10

2.2.1 Properties of # and ≈α 11

2.3 Nominal Constraint Solving and Unification 19

2.3.1 Nominal Constraint Solving 19

2.3.2 Equational Problems 24

2.3.3 Nominal Unification 24

3 nominal universal algebra 29

3.1 A More General Derivation System 29

3.1.1 Instantiating Axioms 31

3.1.2 Permutating Atoms: α-equivalence 32

3.1.3 Proof-theoretical Results 32

3.2 Denotational Semantics 36

3.2.1 Nominal Sets 36

3.2.2 Semantic Freshness 39

3.2.3 Products 40

3.2.4 Equivariant Functions 41

3.3 Nominal Algebra 41

3.3.1 Soundness 42

3.3.2 The Ground Initial Algebra F(T,D) 44

3.3.3 Completeness for Equality Derivations 46

3.3.4 Completeness for Freshness 51

3.4 Homomorphisms, Subalgebras and Product Algebras 51

3.4.1 Homomorphisms and Homomorphic Images. 51

3.4.2 Subalgebras 52

3.4.3 Product Algebras 53

3.4.4 Atoms-abstraction 54

3.5 Varieties and Equational Classes of Algebras 55

3.5.1 Surjections Out of Initial Algebras 56

3.5.2 Injections Out of Initial Algebras 57

3.5.3 The Nominal HSP Theorem 58

4 nominal disunification constraints 61

4.1 Generalized Instantiation 63

4.2 Solving Nominal Constraints 65

5 conclusions and future work 69

a zfa set theory and equivariance 71

b complete proofs 73

b.1 Chapter 2 73

b.2 Chapter 3 75

bibliography 79

xi

[June 16, 2021 at 14:22 – v1.2.1]

L I S T O F F I G U R E S

Figure 2.1 Derivation rules for freshness 10

Figure 2.2 Derivation rules for α-equivalence 11

Figure 2.3 Simplification rules for unification problems 20

Figure 3.1 Axioms for the theory SUB. 30

Figure 3.2 Axioms for (β) and (η) conversion. 30

Figure 3.3 Derivation rules for equality 30

Figure A.1 Axioms of ZFA Set Theory 71

L I S T O F TA B L E S

Table 2.1 Complexity of Matching and α-equality check. 24

xii

[June 16, 2021 at 14:22 – v1.2.1]

1
I N T R O D U C T I O N

Nominal techniques can be used to reason about systems with binders.
The binding structure of these systems always requires a method to
deal with α-equivalence between objects in the system, i.e., objects
(usually the parse tree representation of the concrete syntax) are
considered equal if they differ only by the name of bound variables.
For instance, in the syntax of λ-calculus, terms like λx.x y and λz.z y
should be considered equivalent, despite their syntactical differences.

It is common in the literature to consider the α-equivalence relation
as part of the syntactical structure of terms of the language. One
often says “terms are considered syntactically identical if they are
α-convertible”. This means that one considers the quotient of the set
of terms by the α-equivalence relation. So one has the problem of
which representative of α-equivalence classes should be chosen. One
of the most popular strategies to solve this problem is called the
“Barendregt Variable Convention”: choose representatives for which
the bound variables are mutually distinct and distinct from any free
variable in the current context. This strategy solves the problem for
handwritten proofs and calculations, but not for implementations.
Another treatment of α-equivalence is to get rid of equivalence classes
by considering de Bruijn indices instead of variable names. Using de
Bruijn indices, free and bound variables are indexed as naturals and
thus all objects have unique representations so that one does not need
to worry about representatives of equivalence classes. This approach
facilitates the implementation of systems with binders but at the cost
of readability.

The nominal approach diverges from those above in two important
ways: first, one can reason about α-equivalence in a readable way,
very close to informal practice, while still remaining fully formal
since α-renaming is embedded in the nominal syntax; second, nominal
α-equivalence is easy to implement in computer systems.

Nominal terms have atoms (a, b, c . . .) used to represent object-level
variables, and variables, or unknowns (X, Y, . . .) used to express variables
on the meta-level. Atoms can be abstracted by a binder operator but
cannot be instantiated by a substitution, whereas variables cannot be
abstracted but can be instantiated by a substitution. For instance, the
nominal term [a] t represents the abstraction of atom a in t. To rename
an atom a to another atom b we make use of an atom permutation.
Permutations are built as lists of atom swappings of the form (a b). The
action of π = (a b) over [a] t, denoted by π · t gives as result the term
[b] t′ where t′ is obtained by the replacement of all occurrences of a by
b and all occurrences of b by a in t. The action of an atom permutation
π over a meta-variable X will be ‘suspended’ in X, written as π · X,
and will be ‘executed’ only when X is instantiated. The α-equivalence
relation over nominal terms is built using permutations and a freshness

1

[June 16, 2021 at 14:22 – v1.2.1]

2 introduction

relation between atoms and terms, written as a#t, which means that a
cannot occur free in t.

Nominal techniques have been widely explored and investigated
for the last years [3, 18, 26]. Nominal unification has also been de-
veloped [13, 29], and more recently, works on unification modulo
equational theories [1, 2, 4] have also been developed. Unification is
the problem of finding a substitution σ that makes two terms ‘equal’
i.e., sσ ≈α tσ. In the nominal setting, α-equality comes with fresh-
ness conditions for atoms, which should be taken into account when
dealing with nominal unification problems. For instance, the prob-
lem of unifying λ[a] X and λ[b]Y reduces to the problem of unifying
X ≈α

? (b a) · Y under the condition that a#Y. Therefore, a solution
to a nominal unification problem will be a pair 〈Γ, σ〉 consisting of a
set of freshness constraints Γ, and a substitution σ over the variables
appearing in the problem. Several applications of nominal unification
exist, for instance, in logic programming [14], automatic deduction
and theorem proving [24], among others.

This work is about nominal disunification, that is, the problem of
solving nominal unification questions enriched with disequations, i.e.,
constraints of the form s 6≈α

? t. For example, consider the unification
problem λ[a] X ≈α

? λ[b]Y as above, but imposing the condition that
solutions can neither map X to the atom a nor Y to the atom b. This
condition may be given as a set of disequations, and solutions should
be computed in such a way that they (and therefore, their instances)
satisfy the imposed restriction. The nominal disunification constraint is
then represented as a pair of equational and disequational problems:〈

λ[a] X ≈α
? λ[b]Y || X 6≈α

? a, Y 6≈α
? b
〉

Imposing such conditions has some side-effects that need to be ad-
dressed in order to be able to formally state a definition of solution.
In a more general view, a nominal disunification problem is given as
P = 〈∆ ` s1 ≈α

? t1, . . . , sn ≈α
? tn | ∇ ` u1 6≈α

? v1, . . . , um 6≈α
? vm〉,

and a solution to such problem is a pair 〈Γ, σ〉 of a context Γ and
a substitution σ, such that σ makes terms of each equation equal,
but leaves those of the disequations different, while satisfying the
freshness constraints ∆ and ∇.

The strategy proposed by Buntine and Bürckert [9] to solve systems
containing first-order equations and disequations is followed in the
current work. But its extension to the nominal setting is not straight-
forward since the notions of equality and disequality are different
and the freshness side conditions add extra constraints to the prob-
lem. The standard nominal unification algorithm [29] can be reused
to provide solutions to nominal unification problems, and following
Buntine and Bürckert’s approach, we show that nominal disequations
can be treated in a nominal term-algebra.

related work . Disunification problems have been studied exten-
sively in the first-order framework [6, 9, 15–17, 28] and also in the
higher-order one [25].

[June 16, 2021 at 14:22 – v1.2.1]

introduction 3

Buntine and Bürckert [9] solve systems of equations and disequa-
tions in equational theories with a finitary unification type; they inves-
tigate E-disunification problems with two main applications in mind:
the first application is to give a generalization for logic programming
to include negation clauses in such a way that solution to queries can
be expressed as substitutions other than the limited form of negation,
called negation as failure.

The second applications is related with the use of E-disunification as
a mechanism to drastically reduce the solution space of the unification
algorithm for some equational theories. For instance, they showed that
associative-commutative unification problems (a.k.a. AC-unification
problems) are in fact a kind of so called AC1-disunification problems
(associative-commutative functions with a unity 1) that have a solution
space considerably smaller than the solution space of standard AC-
problems. Differently, Comon and Lescanne [15, 16] consider more
general problems, called equational problems, which include universally
and existentially quantified variables in the algebra of rational trees
or in the quotient term-algebra T(F, X) by a congruence =E. They
propose a set of transformation rules on equational problems of the
form ∃w∀y : P1 ∧ . . . ∧ Pn, where Pi, for i = 1..n, is a called a system,
that is, an equation of the form s = t or >, or a disequation s 6= t or
⊥, or a disjunction Pi1 ∨ . . . ∨ Pini of systems. Their strategy consists of
applying transformation rules to the equational problem until a kind
of solved form is reached. These problems have applications in sufficient
completeness for algebraic specifications defined by sets of rewriting
rules.

In [17], Fernández shows that E-disunification is semi-decidable
when the theory E is presented by a ground convergent rewrite system,
and gives a sound and complete E-disunification procedure based on
narrowing. Baader and Schulz [6] show that solvability of disunifica-
tion problems in the free algebra of the combined theory E1 ∪ . . . ∪ En

is decidable if solvability of disunification problems with linear con-
stant restrictions in the free algebras of the theories Ei(1 ≤ i ≤ n) is
decidable. Lugiez [25] introduces higher-order disunification problems
and gives some decidable cases for which equational problems can be
extended to higher-order systems.

contributions . The main contributions presented in this disser-
tation is summarized as follows.

1. We include proofs for all important results, complementing the
related work.

2. We extend first-order disunification problems to the nominal
framework introducing nominal constraint problems.

3. We extend the notion of substitution with exceptions to solution
pairs that consists of a freshness context and a substitution-with-
exceptions, Definition 4.2. In addition, a version of the Consis-
tency Test Algorithm (Algorithm 1) to deal with the consistency
problem of pairs with exceptions is proposed.

[June 16, 2021 at 14:22 – v1.2.1]

4 introduction

4. We propose a sound, complete, and terminating (provided nom-
inal unification is finitary) procedure (Algorithm 2) to solve
nominal disunification constraints that reuses the nominal unifi-
cation algorithm.

5. We prove that the Representation Theorem holds in the nominal
approach to disunification. This, Theorem 4.1, is the main result
of the dissertation.

6. From the semantics point of view, we show that Birkhoff’s HSP
Theorem (Theorem 3.12), as in the first-order case, does not hold
for nominal disequations, see Example 3.6.

The results obtained in this work, presented mainly in Chapter 4,
have been accepted for publication in the Proceedings of LSFA 2019 [5].

outline of the dissertation. Chapter 2 establishes the main
notions from nominal syntax, α-equality, and unification. Chapter 3

introduces notions from nominal universal algebra by working on a
detailed revision of all the construction needed to prove the nominal
version of the so called HSP Theorem, Theorem 3.12. Chapter 4 intro-
duces the nominal constraint problems as well as a generalized notion
of instantiation and proves some results on the consistency of pairs
with exceptions. Section 4.2 shows how to solve nominal constraint
problems by reusing the nominal unification algorithm. Chapter 5

concludes the dissertation.

[June 16, 2021 at 14:22 – v1.2.1]

https://sites.google.com/view/lsfa2019

2
N O M I N A L A B S T R A C T S Y N TA X

This chapter introduces the basic concepts and definitions on nominal
terms, constraint solving, and nominal unification. The notation is
consistent with standard works on nominal techniques such as [18]
and [22].

2.1 nominal terms

Fix countable infinite disjoint sets of variables X = {X, Y, Z, . . . } and
atoms A = {a, b, c, d, · · · }. Variables represent meta-level unknowns
and atoms object level variable symbols. Atoms are identified by their
name, so it is redundant to say two atoms a and b are different. A
signature Σ is a set of term-formers such that each f ∈ Σ is assigned a
unique non-negative integer n, called the arity of f , written as f : n.

A permutation π is a bijection A → A with finite domain, i.e.,
the set supp(π) := {a ∈ A | π(a) 6= a} is finite. Write id for the
identity permutation. The composition of two permutations π and
π′ is denoted as π ◦ π′. We also write a permutation π as a list of
swappings π = (a1 b1)(a2 b2) . . . (an bn) and denote by (P, ◦) the
group of all permutations with finite support. We may abbreviate
(P, ◦) as P.

Definition 2.1 (Nominal Terms). Let Σ be a signature disjoint from
A and X. The set T(Σ, A, X) of all nominal terms is inductively
generated by the following grammar:

s, t, u, v ::= a | π · X | [a] t | f (t1, . . . , tn)

Terms are called, respectively, atoms, moderated variables, abstrac-
tions, and functions application. Nominal terms are like first-order
terms with the addition of atoms, abstractions, and a built-in notion
of binder. Atoms are just members of A, as said earlier they represent
object-level variables. A moderated variable is a variable that has a
suspended permutation, intuitively, a suspension π · X represent ‘per-
mute π in whatever X is instantiated to’. Note that X is not a nominal
term but id · X is. However, the abbreviation of id · X to X is used
when no ambiguity arises. An abstraction [a] t is intended to represent
a term t (the scope of [a]) with all occurrences of the atom a bounded
by the binder operator [·]. Atoms not in the scope of a binder [·] are
called free.

Example 2.1. Let Σλ := {lam : 1, app : 2} be the signature for the
λ-calculus (for a complete axiomatization of the λ-calculus within
the nominal syntax the reader is referred to [21]). If one consider
λ-variables as atoms λ-terms can be inductively generated by the
grammar:

e ::= a | lam([a] e) | app(e, e)

5

[June 16, 2021 at 14:22 – v1.2.1]

6 nominal abstract syntax

To simplify notation, write app(s, t) as s t and lam([a] s) as λ[a] s. The
following are examples of nominal terms:

(λ[a] a) X (λ[a] (λ[b] b a) c) d

Definition 2.2. The pair s ≡ t denote syntactic equality between terms.

Remark 2.1. Note that if π = γ then π · X ≡ γ · X, since permutations
are bijections. In nominal syntax there is no quotient by abstraction,
e.g. [a] a 6≡ [b] b.

2.1.1 Substitutions and Permutation Action

Substitution is not an easy notion to define in a system with binders
because it needs to avoid the capture of free variables occurrences. For
example, consider the λ-term (λy.yx), one can think of this term as
the function that ‘takes the input y and apply it to x’. The substitution
[x/y] applied to (λy.yx) without any restriction give as output the
λ-term (λy.yy) which has the function interpretation of ‘takes the
input y and apply it to itself’. Notice that in the resultant term the
former x, substituted for y, is now bounded: it has been captured by
the abstractor λ. The capture of free variables changes the semantics of
λ-terms, in the sense that λ-terms are abstractions for the behavior of
functions: changing how functions behave also changes its semantics.

Binders appears not only in the λ-calculus context. Maybe a more
iluminating example1 would be a function like f (y) = y + x which
becomes f (y) = y + y if x is renamed for y. Perhaps is now more
easy to see what we mean by a change on the semantic of a term by
free variable capturing. The same happens in first-order logic when
we consider formulas like ∀y. y > x which does not have the same
semantics as ∀y. y > y. These requirements could be summarized as
the following:

Substitutions of free variables in a term cannot change the semantics of that
term.

One approach to tackle ‘the binding problem’ is by defining a special
kind of substitution, called renaming, that only map bound variables
in a term to other fresh variables, and then builds the notion of a
general substitution on top of this renaming operation. For instance,
before the application of [x/y] in (λy.yx) rename the binding variable
y in (λy.yx) to a fresh variable z obtaining (λz.zx). Finally, apply the
substitution (λz.zx)[x/y] to get λz.zy.

Another attempt is to define an equivalence relation on terms, called
α-equivalence, and put the renaming side conditions inside this def-
inition. Again, renaming is the basis of α-equivalence. For a more
detailed discussion the reader is referred to [8, Definition 2.1.11].

The nominal approach differs from the previous by making a distinc-
tion between two kinds of variables: first, the meta-level variables (just
call them variables); second, the object-level variables (call them atoms).

1 For a more mathematical inclined audience.

[June 16, 2021 at 14:22 – v1.2.1]

2.1 nominal terms 7

Meta-level variables are unknowns that can be instantiated to other
nominal terms. In constrast, atoms are constant-like variables that
represent object-level unknowns which can be bounded by a binder
operator, and renaming is implemented via the use of permutations
of names.

We shall now define how permutations and substitutions act on
general terms, denoted by π · t and tσ, respectively.

Definition 2.3 (Action of Permutation). The object-level action of a
permutation π on a term t is defined by induction on the structure of
t, as follows:

π · a ≡ π(a) π · (γ · X) ≡ (π ◦ γ) · X π · [a] t ≡ [π · a] (π · t)
π · f (t1, . . . , tn) ≡ f (π · t1, . . . , π · tn)

Intuitively, π propagates through the structure of t until it reaches an
atom or a moderated variable. It can be proven (by a simple induction
on the structure of terms and using the definition given above) that
composition and identity of permutations extend to terms, that is:
(π ◦ γ) · t ≡ π · (γ · t) and id · t ≡ t. This fact will be used extensively
in the reasoning that follows.

As usual, substitutions are defined as maps from variables to nomi-
nal terms. They are the way we instantiate variables, that is, replace
the occurrence of a variable X by a nominal term t, denoted as [X/t].
The action of a substitution can be extended from variables to terms
according to the definition below.

Definition 2.4 (Action of substitutions). The meta-level action of
a substitution σ on a term t, denoted as tσ, is inductively defined by:

aσ ≡ a (π · X)σ ≡ π · (Xσ) ([a] t)σ ≡ [a] (tσ)

f (t1, . . . , tn)σ ≡ f (t1σ, . . . , tnσ)

Intuitively, σ propagates through the structure of a term until it
reaches an atom or a moderated variable. Atoms are treated like
constants by the substitution, and when it reaches a suspension π · X
then σ acts on X and afterwards π acts on Xσ. For example, take
π = (a b) and σ = [X/b] then ((a b) · X)σ ≡ (a b) · b ≡ a.

Remark 2.2. The composition of two substitutions will be denoted by
σ ◦ τ (abbreviated by στ) and means: first apply σ and then apply τ to
the resultant term.

t(σ ◦ τ) ≡ tστ ≡ (tσ)τ

Remark 2.3. Substitutions do not avoid capture of variables by itself.
For instance, take ([a] t)σ ≡ [a] (tσ) the substitution σ does not avoid
capture of a in t by the abstraction.

The next lemma guarantees that substitutions and permutation
actions commute.

Lemma 2.1 (Commutation Lemma). π · (tσ) ≡ (π · t)σ.

[June 16, 2021 at 14:22 – v1.2.1]

8 nominal abstract syntax

Proof. The proof is by induction on the structure of t and using Defi-
nitions 2.3 and 2.4. The base case is trivial since atoms are not affected
by substitution actions. For moderated variables:

π · ((π′ · X)σ) ≡ π · (π′ · (Xσ))

≡ (π ◦ π′) · Xσ

≡ (π ◦ π′ · X)σ

≡ (π · (π′ · X))σ

For abstractions:

π · ([a] tσ) ≡ [π · a]π · (tσ)
I.H≡ [π · a] (π · t)σ
≡ (π · [a] t)σ.

Finally, for function application:

π · f (t1, . . . , tn)σ ≡ f ((π · t1)σ, . . . , (π · tn))σ

I.H≡ f (π · (t1σ), . . . , π · (tnσ))

≡ π · (f (t1, . . . , tn)σ).

Definition 2.5. The meta-level permutation action of a per-
mutation π on a term t, denoted tπ, is inductively defined by:

aπ ≡ π(a) (γ · X)π ≡ (πγπ−1) · X ([a] t)π ≡ [aπ] tπ

f (t1, · · · , tn)
π ≡ f (tπ

1 , · · · , tπ
n)

Remark 2.4. Note that the meta-level action of a permutation on a
suspension is the conjugation (as in abstract algebra) of γ by π. In fact,
we can view the definition given above as the action of the group P

by conjugation on terms. The conjugation of two elements from P, as
usual, is denoted by ρπ = πρπ−1.

The next lemma translates the predicted behavior of compositions
π ◦ ρ acting on terms. They act like P-conjugation on A.

Lemma 2.2. For any term t and permutations π and ρ, tπ◦ρ ≡ tρπ
.

Proof. The proof is by induction on the structure of t and using Defi-
nition 2.5.

The base case follows by aπ◦ρ ≡ π(ρ(a)) ≡ π(aρ) ≡ aρπ
.

For abstractions we have:

([a] t)π◦ρ ≡ [aπ◦ρ] tπ◦ρ

≡
[

aρπ
]

tπρ

I.H≡
[

aρπ
]

tρπ

≡ ([a] t)ρπ

[June 16, 2021 at 14:22 – v1.2.1]

2.1 nominal terms 9

The most interesting case is:

(γ · X)π◦ρ ≡ (πρ)γ(πρ)−1 · X
≡ π(ργρ−1)π−1 · X
≡ πγρπ−1 · X
≡ (γρ)π · X
≡ (γ · X)ρπ

Finally the case for function application follows by:

f (t1, . . . , tn)
π◦ρ ≡ f (tπ◦ρ

1 , . . . , tπ◦ρ
n)

I.H≡ f (tρπ

1 , . . . , tρπ

n)

≡ f (t1, . . . , tn)
ρπ

The next lemma states that Definitions 2.3 and 2.5 are definable in
term of each other, in the presence of substitution.

Lemma 2.3. Given a term t and a permutation π, let σ be a substitution
that maps each X mentioned in t to π · X and σ′ that maps each X
mentioned in t to π−1 · X. Then:

π · t ≡ tπσ and tπ ≡ (π · t)σ′

Proof. The proof follows by induction on the structure of t.

The base case is trivial since atoms are not affected by substitu-
tions.

For abstractions we have: π · [a] t ≡ [π(a)]π · t and by induction
hypothesis follows that [aπ]π · t ≡ [aπ] tπσ ≡ ([a] t)πσ.

The case for suspensions follows by:

π · (γ · X) ≡ πγ · X
≡ πγπ−1 · (π · X)

≡ πγπ−1 · (Xσ)

≡ (πγπ−1 · X)σ

≡ (γ · X)πσ.

For function application f (π · t1, . . . , π · t1) induction hypoth-
esis gives π · ti ≡ tπ

i σ, and we conclude π · f (t1, . . . , tn) ≡
f (t1, . . . , tn)

πσ.

The proof of (γ · X)π ≡ (π · (γ · X))σ′ follows the same reasoning:

(γ · X)π ≡ πγπ−1 · X
≡ πγ · (π−1 · X)

≡ π · (γ · X)σ′

[June 16, 2021 at 14:22 – v1.2.1]

10 nominal abstract syntax

2.2 equality and derivability

This section concentrates on the study of nominal α-equivalence. The
predicate for α-equality (≈α) in nominal terms relies on the notion of
‘fresh variable’ (#):

– a#t means that atom a cannot occur free in t;

– s ≈α t means that s is α-equivalent to t.

Constraints are generated by the grammar

P, Q, C := a#t | s ≈α t.

The first constraint a#t is called a freshness constraint whereas the
second s ≈α t is called an α-equality constraint. A freshness constraint
of the form a#a or a#X is called primitive (or reduced). We may drop
set brackets and write a#t, b#u for {a#t, b#u}.

A context, denoted by greek letters ∆, Γ, . . . is a set of primitive
freshness constraints, it is called consistent if it does not contain any
constraint of the form a#a.

With the predicates for freshness (#) and α-equality (≈α), Fernández
and Gabbay [18] present a derivation system defined by the rules in
Figures 2.1 and 2.2 to express validity of freshness and α-equality
constraints. This system generates an equality theory, in the sense of
Theorem 2.4.

Definition 2.6. An α-equality is a pair s ≈α t where s and t are terms.

(#ab)
a#b

π−1(a)#X
(#X)

a#π · X
(#a)

a#[a] t
a#t (#b)

a#[b] t
a#t1 · · · a#tn (# f)

a# f (t1, . . . , tn)

Figure 2.1: Derivation rules for freshness

To define ≈α consider the difference set of two permutations:

ds(π, γ) := {a ∈ A | π(a) 6= γ(a)}.

In the rules defining ≈α below, ds(π, γ)#X denotes the set of con-
straints {a#X | a ∈ ds(π, γ)}.

Definition 2.7. Define a notion of α-derivability by the deduction rules
in Figures 2.1 and 2.2.

1. Write ∆ ` a#t when a derivation of a#t exists using the elements
of ∆ as assumptions. We say ∆ ` a#t is derivable or just ∆ ` a#t.

2. Write ∆ ` s ≈α t when s ≈α t can be derived such that the
derivation uses (at most) assumptions from ∆. We say ∆ ` s ≈α t
is derivable or just ∆ ` s ≈α t and write ∆ 0 t ≈α u (or even
∆ ` s 6≈α t) when ∆ ` t ≈α u is not derivable.

[June 16, 2021 at 14:22 – v1.2.1]

2.2 equality and derivability 11

(≈α a)a ≈α a
ds(π, γ)#X

(Ds)
π · X ≈α γ · X

t1 ≈α u1 · · · tn ≈α un (F)
f (t1, . . . , tn) ≈α f (u1, . . . , un)

t ≈α u (Abs-a)
[a] t ≈α [a] u

(b a) · t ≈α u b#t
(Abs-b)

[a] t ≈α [b] u

Figure 2.2: Derivation rules for α-equivalence

Example 2.2. Below we give some examples of derivation trees, in the
first we derive a#(Xλ[a]Y) in the syntax of untyped λ-calculus with
the assumption a#X. The second is a trivial α-equivalence equality, we
use it as an example to show how derivations are constructed.

a#X

(#a)
a#[a]Y

(# f)
a#λ[a]Y

(# f)
a#(X λ[a]Y)

(≈α a)
b ≈α b

(b a) · b ≈α a
(#a)

b#a
(Abs-b)

[a] a ≈α [b] b

The dashed line above represents a computation with the permutation
action (b a) · a, not an application of a derivation rule.

Definition 2.8. We extend notation for tπ, π · t and tσ to freshness
contexts ∆ as follows:

∆π := {π · a#X | a#X ∈ ∆}
π · ∆ := {π · a#π · X | a#X ∈ ∆}

∆σ := {a#Xσ | a#X ∈ ∆}

Note that ∆π is a freshness context, but π · ∆ and ∆σ need not be.

2.2.1 Properties of # and ≈α

In this subsection some syntactical properties of freshness and α-
equality constraints will be developed.

Definition 2.9. The functions atms(t) and var(t) will be used to
compute the set of atoms and unknowns in a term, respectively. They
are defined by:

atms(a) = {a}
atms([a] t) = atms(t) ∪ {a}

var(a) = ∅

var([a] t) = var(t)

atms(π · X) = supp(π)

atms(f (t1, . . . , tn)) = ∪iatms(ti)

var(π · X) = {X}
var(f (t1, . . . , tn)) = ∪ivar(ti)

This definition can be extended to constructions more complex than
terms, e.g. a list (as in atms(∆, s, t)) or a substitution. By this we mean
the atoms or variables appearing anywhere within the brackets. More

[June 16, 2021 at 14:22 – v1.2.1]

12 nominal abstract syntax

specifically, atms(∆, s, t) means {a | a#X ∈ ∆} ∪ atms(s) ∪ atms(t).
Note that this extension will also be used for the function var(·).

The next lemma states that if two permutations are identified in
their action (that is, ds(π, γ) = ∅) then they are also equivalent, in
the sense that they are logically indistinguishable.

Lemma 2.4. Suppose ∆ is a context. If ds(π, γ) = ∅ then:

1. ∆ ` π · a#t iff ∆ ` γ · a#t,

2. ∆ ` a#π · t iff ∆ ` a#γ · t,

3. ∆ ` π · s ≈α t iff ∆ ` γ · s ≈α t,

4. ∆ ` s ≈α π · t iff ∆ ` s ≈α γ · t.

Proof. Consider π 6= id. If π = id the result is trivially true.

1. Note that ds(π, γ) = ∅ precisely when π(a) = γ(a) for every
atom a, so π · a ≡ γ · a and the result follows.

2. We work by induction on the derivation of a#π · t from ∆. There
are five cases to consider and the analysis is based on the last
rule applied in the derivation.

a) The derivation concludes in (#ab): then π · t ≡ b so t ≡ c,
for some atom c, and since π · b ≡ γ · b, the base case
follows.

b) The derivation concludes in (#X):

Then ∆ ` a#π · X and π−1(a)#X ∈ ∆. Since ds(π, γ) = ∅,
one has γ−1(a) = π−1(a), therefore, there is a proof of
∆ ` a#γ · X.

c) The derivation concludes in (#a):

Then ∆ ` a#π · ([b] s) and π · b ≡ a. Since γ · b ≡ a we use
(#a) to build a derivation of a#γ · [b] s.

d) The derivation concludes in (#b):

Then ∆ ` a#π · [b] s, π · b ≡ b′ 6≡ a (otherwise the rule
(#a) is applied), and ∆ ` a#π · s is derivable. By induction
hypothesis, ∆ ` a#γ · s is derivable, and by rule (#b), there
is a derivation of ∆ ` a#γ · [b]s.

e) The derivation concludes in (# f):

Then ∆ ` a#π · f (t1, . . . , tn) and ∆ ` a#π · ti for 1 ≤ i ≤ n is
also derivable. By induction hypothesis, ∆ ` a#γ · ti. From
rule (# f), ∆ ` a#γ · f (t1, . . . , tn) is derivable.

3. The proof is by induction on the derivation of ∆ ` π · s ≈α t, by
analysing the last rule applied.

a) The base case is trivial since π · a ≡ γ · a for all atoms a.

[June 16, 2021 at 14:22 – v1.2.1]

2.2 equality and derivability 13

b) The derivation concludes in (Ds):

Derive ∆ ` π · τ ·X ≈α τ′ ·X from ∆ ` a#X for every a#X in
ds(π ◦ τ, τ′). Since ds(π, γ) = ∅, the identity (π ◦ τ) · a ≡
(γ ◦ τ) · a holds, for every atom a. Therefore, ds(πτ, τ′) =

ds(γτ, τ′). We can now write a derivation concluding in ∆ `
τ · τ · X ≈α τ′ · X, from the same hypothesis, by applying
(Ds).

c) The derivation concludes in (Abs-a):

Then we derive ∆ ` [π · b]π · s ≈α [a] t from ∆ ` π · s ≈α t,
with π · b ≡ a. By induction hypothesis, ∆ ` γ · s ≈α t,
besides γ · b ≡ a, therefore, we use (Abs-a) to conclude
∆ ` [γ · b] γ · s ≈α [a] t.

d) The derivation concludes in (Abs-b):

Then ∆ ` [π · a]π · s ≈α [b] t is derivable from ∆ ` (b π(a)) ◦
π · s ≈α t and ∆ ` b#π · s, with π · a 6≡ b. Since ds(π, γ) = ∅
and π · a ≡ γ · a, it follows that ds((b π · a) ◦ π, (b γ · a) ◦
γ) = ∅. By induction hypothesis, ∆ ` (b γ · a) · γ · s ≈α t
and by part 2, ∆ ` b#γ · s. By applying rule (Abs-b) we
conclude ∆ ` [γ · a] γ · s ≈α [b] t.

e) If the derivation concludes in (F) just apply the induction
hypothesis and (F).

4. Follows the same reasoning as in item 3.

The next theorem shows that nominal logic is equivariant, in the
sense that derivable freshness (a#t) and equality (s ≈α t) are invariant
under the action of permutations.

Theorem 2.1 (Object-level equivariance). For any permutation π:

1. if ∆ ` a#t then ∆ ` π · a#π · t;

2. if ∆ ` s ≈α u then ∆ ` π · s ≈α π · u.

Proof. Consider π 6= id. If π = id the result is trivially true.

1. The proof is by induction on the derivation rules from Table 2.1,
by analysing the last rule applied in ∆ ` a#t.

a) Base case is trivial.

b) The last rule is (#X):

Then ∆ ` a#γ · X is derivable and γ−1 · a#X ∈ ∆. Notice
that

(π ◦ γ)−1 · π · a ≡ (γ−1 ◦ π−1 ◦ π) · a ≡ γ−1 · a

Therefore, (π ◦ γ)−1 · π · a#X ≡ γ−1 · a#X ∈ ∆, and the
result follows from

(π ◦ γ)−1 · π · a#X ∈ ∆
(#X)

∆ ` π · a#(π ◦ γ) · X

[June 16, 2021 at 14:22 – v1.2.1]

14 nominal abstract syntax

c) The last rule is (#a):

Notice that ∆ ` π · a#π · ([a] t) is the same as ∆ ` π ·
a#[π · a]π · t, which is derivable using (#a).

d) The last rule is (#b):

Then ∆ ` a#[b] t is derivable from ∆ ` a#t. By induction
hypothesis ∆ ` π · a#π · t, therefore, there is a derivation Π

Π
∆ ` π · a#π · t (#b)

∆ ` π · a#
[
π · b′

]
π · t

where π · b′ ≡ b, and the result follows.

e) The last rule is (# f):

Then ∆ ` a# f (t1, . . . , tn) is derivable from ∆ ` a#t1, . . . , a#tn.
By induction hypothesis, ∆ ` π · a#π · t1, . . . , π · a#π · tn and
∆ ` π · a#π · f (t1, . . . , tn) is derivable using (# f).

2. The proof is by induction on the rules from Table 2.2, by analysing
the last rule applied in ∆ ` s ≈α u.

a) For the base case:

From ∆ ` a ≈α a one can trivially deduce ∆ ` π · a ≈α π · a.

b) The last rule is (Ds):

Then ∆ ` τ · X ≈α γ · X is derivable from ∆ ` ds(τ, γ)#X.
Note that ds(π ◦ τ, π ◦ γ) = ds(τ, γ), therefore, ∆ ` (π ◦
τ) · X ≈α (π ◦ γ) · X is derivable using (Ds).

c) The last rule is (Abs-a):

Then ∆ ` [a] s ≈α [a] u is derivable from ∆ ` s ≈α u. By
induction hypothesis there is a derivation of ∆ ` π · s ≈α

π · u, and we build a derivation for ∆ ` [π · a]π · s ≈α

[π · a]π · u using (Abs-a), which is the same as π · [a] s ≈α

π · [a] u.

d) The last rule is (Abs-b):

Then ∆ ` [a] s ≈α [b] u is derivable from ∆ ` (b a) · t ≈α u
and ∆ ` b#t. By induction hypothesis, ∆ ` (π ◦ (b a)) · t ≈α

π · u, and ∆ ` π · b#π · t is derivable from the first part.
Since ds(π ◦ (b a), (π · b π · a) ◦ π) = ∅ and by part 3 of
Lemma 2.4, there are derivations Π1 and Π2 such that

Π1

∆ ` ((π · b π · a) ◦ π) · t ≈α π · u
Π2

∆ ` π · b#π · t
(Abs-b)

∆ ` [π · a]π · t ≈α [π · b]π · u

which proves this case.

e) If the derivatoin ends with (F):

By induction hypothesis, ∆ ` π · si ≈α π · ti, for 1 ≤ i ≤ n.
Finally, with (F) we conclude ∆ ` π · f (s1, . . . , sn) ≈α π ·
f (u1, . . . , un).

[June 16, 2021 at 14:22 – v1.2.1]

2.2 equality and derivability 15

Corollary 2.1. For any permutation π: ∆ ` a#π · t if, and only if,
∆ ` π−1 · a#t. Similarly, ∆ ` π · t ≈α u if, and only if, ∆ ` t ≈α π−1 · u.

Proof. Follows by directly by equivariance, Theorem 2.1.

The next lemma states that freshness derivability is preserved under
α-equality.

Lemma 2.5. If ∆ ` t ≈α u then ∆ ` a#t if, and only if, ∆ ` a#u.

Proof. The proof is by induction on the structure of t. The base case is
trivial.

(a) If t = π · X, then ∆ ` π · X ≈α γ · X is derivable from ∆ `
ds(π, γ)#X. Now if ∆ ` a#π · X then ∆ ` π−1(a) · X. There are
two cases to consider: first, π(a) ≡ γ(a) and trivially γ−1(a)#X;
second, π(a) 6≡ γ(a) but since ∆ ` ds(π, γ)#X by assumption, the
result follows.

(b) Suppose t = [b] t′ then u is either [b] u′ or [c] u′. In the first case,
∆ ` t ≈α u is derivable using (Abs-a), so ∆ ` t′ ≈α u′. It follows
from I.H that if ∆ ` a#t′ then ∆ ` a#u′, and by using (#b) whe
have that ∆ ` a#[b] t′ implies a#[b] u′. For the latter case, note that
∆ ` t ≈α u is derivable using (Abs-b) so both ∆ ` (c b) · t′ ≈α u′

and c#t′ are derivable. By I.H a#(c b) · t′ implies a#u′. Equivariance,
using π = (c b), gives a#t′ and by (#b) a#[c] u′.

(c) Supoose t = f (t1, . . . , tn), then u = f (u1, . . . , un) and ∆ ` ti ≈α ui.
By using I.H we get ∆ ` a#ti implies ∆ ` a#ui. The conclusion
follows using (# f).

The next result summarizes an important property of derivations:
we do not need any assumption a#X if a does not appear in the syntax
of s, for a#t, or in the syntax of s, t for derivations of s ≈α t.

Theorem 2.2 (Strengthening). Suppose a /∈ atms(s, t). Then:

1. ∆, a#X ` b#s implies ∆ ` b#s.

2. ∆, a#X ` s ≈α t implies ∆ ` s ≈α t.

Proof. In both cases, the proof is by induction on the derivation rules
for freshness Figure 2.1 and/or α-equality (Figure 2.2).

1. The analysis follows by checking the last rule applied in the
derivation of ∆, a#X ` b#s.

a) Base case: when the last rule is (#ab) or (#a) the result
follows trivially.

b) The last rule is (#X):

Then ∆, a#X ` b#π · X. If a /∈ atms(π · X) = supp(π) then
π−1 · b 6≡ a, and by Corollary 2.1, π−1 · b#X ∈ ∆. Therefore,
by applying (#X) ∆ ` b#π · X, and the result follows.

[June 16, 2021 at 14:22 – v1.2.1]

16 nominal abstract syntax

c) The last rule is (#b):

Hence, ∆, a#X ` b#[c] s is derivable from ∆, a#X ` b#s. By
the induction hypothesis ∆ ` b#s, and we derive ∆ ` b#[c] s
using (#b).

d) The last rule if (# f):

Then by induction hypothesis, ∆ ` b#si for 1 ≤ i ≤ n. We
derive a# f (s1, . . . , sn) with (# f).

2. The analysis follows by checking the last rule applied in the
derivation of ∆, a#X ` s ≈α t.

a) The base case is trivial, since ` a ≈α a is always derivable.

b) Suppose the last rule is (Ds):

Then ∆, a#X ` π · X ≈α γ · X, hence ∆, a#X ` ds(π, γ)#X.
The result will follow if we prove that ∆ ` ds(π, γ)#X is
derivable. In fact, since a /∈ atms(π · X, γ · X) follows that
a /∈ supp(π) ∪ supp(γ). Therefore, π · a ≡ γ · a ≡ a and
a /∈ ds(π, γ). Hence, ∆ ` ds(π, γ), and ∆ ` π · X ≈α γ · X
follows by (Ds).

c) The last rule is (Abs-a):

Then ∆, a#X ` [c] t ≈α [c] u is derived from ∆, a#X ` t ≈α u.
Induction hypothesis gives us a derivation for ∆ ` t ≈α u
and, we conclude ∆ ` [c] t ≈α [c] u using (Abs-a).

d) The last rule is (Abs-b):

Then ∆, a#X ` [c] t ≈α [d] u can be derived from ∆, a#X `
(d c) · t ≈α u and ∆, a#X ` d#t. By the inductive hypothesis
we have ∆ ` (d c) · t ≈α u, and by the first part ∆ ` d#t. It
is now possible to derive ∆ ` [c] t ≈α [d] u using (Abs-b)
from the above premises.

e) The last rule is (F):

Then ∆, a#X ` f (t1, . . . , tn) and by induction hypothesis
∆ ` ti, for 1 ≤ i ≤ n. Therefore, by (F), ∆ ` f (t1, . . . , tn).

Lemma 2.6. Fix π and γ permutations. If ∆ ` a#s for each a ∈ ds(π, γ)

then ∆ ` π · s ≈α γ · s.

Proof. The proof is by induction on the structure of terms.

1. For the base case suppose s ≡ c, for some atom c. If c ∈ ds(π, γ)

then ∆ ` c#c contradicting our assumption that ∆ ` a#s. (Ob-
serve that no context can prove a freshness constraint of the form
a#a for any atom a). So c /∈ ds(π, γ) and ∆ ` π · c ≈α γ · c.

2. If s ≡ τ · X then ∆ ` a#τ · X for all a ∈ ds(π, γ). By applying
rule (Ds), one has the derivation:

∆ ` ds(πτ, γτ)#X
(Ds)

∆ ` (πτ) · X ≈α (γτ) · X

[June 16, 2021 at 14:22 – v1.2.1]

2.2 equality and derivability 17

This derivation has the proof obligation ∆ ` ds(πτ, γτ)#X. Let
a ∈ ds(πτ, γτ) and consider the atom τ(a). We have two cases
to analyze:

a) If τ(a) ∈ ds(π, γ) then π(τ(a)) 6≡ γ(τ(a)). Note that in
this case a ∈ ds(πτ, γτ). It remains to show a derivation to
∆ ` a#X. By assumption we have ∆ ` τ(a)#τ · X, and by
(#X) ∆ ` a#X.

b) If τ(a) /∈ ds(π, γ) then π(τ(a)) ≡ γ(τ(a)) and a /∈ ds(πτ, γτ),
and we have nothing to prove.

3. Suppose s ≡ [b] t. Then we have that either b ∈ ds(π, γ) or not.
In the first case, observe that the derivation step

∆ ` (γ · b π · b) · (π · t) ≈α γ · t ∆ ` γ · b#π · t
(Abs-b)

∆ ` [π · b] (π · t) ≈α [γ · b] γ · t

has two proof obligations: ∆ ` (γ · b π · b) · (π · t) ≈α γ · t and
∆ ` γ · b#π · t. We derive them in the items below.

a) Notice that ds((γ · b π · b) ◦ π, γ) = ds(π, γ) \ {b}2. Now
the inductive hypothesis can be applied which give us

ds((γ · b π · b) ◦ π, γ)#t
(I.H)

∆ ` (γ · b π · b) · (π · t) ≈α γ · t

The dashed line above represent a shorthand notation for
the use of the induction hypothesis from the premise ds((γ ·
b π · b) ◦ π, γ)#t.

b) Since b ∈ ds(π, γ) then:

π · b 6≡ γ · b =⇒ b 6≡ (π−1γ) · b
=⇒ γ · b 6≡ (γπ−1γ) · b
=⇒ (ππ−1γ) · b 6≡ (γπ−1γ) · b
=⇒ π(π−1γ) · b 6≡ γ(π−1γ) · b

So, π−1γ · b ∈ ds(π, γ) and by assumption ∆ ` π−1γ ·
b#[b] t. Since π−1 6= id we derive ∆ ` π−1γ · b#t by using
(#b). Finally, by equivariance, ∆ ` γ · b#π · t.

Combining items (1) and (2) above the derivation is done.

In the second case, b /∈ ds(π, γ), write c ≡ π · b ≡ γ · b and
construct a derivation as follows:

ds(π, γ)#t
(I.H)

∆ ` π · t ≈α γ · t
(Abs-a)

∆ ` [c]π · t ≈α [c] γ · t

4. Finally, if s ≡ f (t1, . . . , tn), then by induction hypothesis, if
∆ ` a#ti for each a ∈ ds(π, γ) and all 1 ≤ i ≤ n then ∆ `
π · ti ≈α γ · ti. Hence, the result follows from (F).

2 Observe that in the composition, (γ · b π · b) ◦ π, b is mapped as b 7→ π · b 7→ γ · b
while it is mapped as b 7→ γ · b by γ.

[June 16, 2021 at 14:22 – v1.2.1]

18 nominal abstract syntax

Theorem 2.3 (Weakening). Suppose ∆ ` ∇σ, i.e., ∆ ` a#Xσ, for all
a#X ∈ ∇. Then

1. ∇ ` b#s implies ∆ ` b#sσ.

2. ∇ ` s ≈α t implies ∆ ` sσ ≈α tσ.

Proof.

1. The proof is by induction on the derivation of ∆ ` b#s.

a) The base case, rule (#ab), and the rule (#a) are straightfor-
ward.

b) The derivation concludes in (#X):

Then ∇ ` b#π · X is derivable from ∇ ` π−1 · b#X. Using
this fact we have π−1 · b#X ∈ ∇. By assumption, ∆ ` ∇σ.
Therefore, in particular, ∆ ` π−1 · b#Xσ. Equivariance,
Corollary 2.1, ensures the existence of a derivation for
∆ ` b#π · (Xσ), and by the Commutation Lemma (Lemma
2.1), ∆ ` b#(π · X)σ.

c) The derivation concludes in (#b):

Then ∆ ` b#[c] s and by induction hypothesis ∆ ` b#sσ.
Therefore, by (#b) derive ∆ ` b#[c] (sσ).

d) If the derivation concludes in (# f) just apply the induction
hypothesis and use (# f).

2. The proof is by induction on the derivation of ∇ ` s ≈α t.

The base case is trivial. We prove the result for the case (Ds), the
other cases are similar and simpler.

Suppose the last rule is (Ds):

Then ∇ ` π · X ≈α γ · X is derivable from ∇ ` ds(π, γ)#X. By
assumption, ∆ ` ∇σ. Hence, ∆ ` a#Xσ for all a ∈ ds(π, γ). The
result now follows from Lemma 2.6.

Fix a consistent context ∆. As usual, ≈α is an equivalence relation if
it is reflexive, symmetric, and transitive. Also, ≈α is a congruence if it is
an equivalence relation closed by formation of terms, i.e., if ∆ ` s ≈α t
then ∆ ` f s ≈α f t and ∆ ` [a] s ≈α [a] t.

The next theorem states that ≈α is a congruence under a consistent
context. That is, the logic generated by ≈α is an equality theory over the
set of nominal term T(Σ, A, X).

Theorem 2.4. ≈α is a congruence in a consistent context.

Proof. Let ∆ be a consistent context. We first prove that ≈α is an
equivalence relation.

[June 16, 2021 at 14:22 – v1.2.1]

2.3 nominal constraint solving and unification 19

1. Reflexivity: ∆ ` s ≈α s, for all terms s.

The proof is by induction on s. For a complete proof see Lemma
B.1.

2. Symmetry: if ∆ ` s ≈α t then ∆ ` t ≈α s.

The proof is by induction on the depth of the derivation ∆ `
s ≈α t, see Lemma B.2.

3. Transitivity: if ∆ ` s ≈α t and ∆ ` t ≈α u then ∆ ` s ≈α u.

This is Lemma B.3

Now that ≈α is an equivalence relation, it follows by (Abs-a) and (F)
that ≈α is a congruence.

2.3 nominal constraint solving and unification

We first look for a systematic way to answer the questions ‘is a fresh
for t?’, denoted as a#?t, and ‘does there exist a proof for s ≈α t?’,
denoted as s ≈α

? t. We call these questions constraint problems, and to
answer these questions we study the Nominal Unification Theory, which
is concerned about finding (if it exists) a substitution σ that solves a
constraint problem s ≈α

? t (resp. a#?t), that is, σ such that sσ ≈α tσ
(resp. a#tσ).

2.3.1 Nominal Constraint Solving

Note that since syntactic equality ‘≡’ between nominal terms s and t
is not considered up-to-α-equivalence, answering the questions a#?t and
s ≈α

? t for ground terms (var(s, t) = ∅) is nothing but a structural
analysis: for instance, a is fresh for a ground term t, if whenever a occur
in t it appears under the scope of an abstraction [a]t′ in t. However,
for non-ground terms (var(t) 6= ∅), a#?t may depend on freshness
assumptions made on variables occurring in t. In this subsection, we
give an algorithm to decide these questions for arbitrary terms s and
t.

In the definition below we decorate the predicates # and ≈α with “? ”
to emphasize that we are interested in the decision problem generated
by these predicates.

Definition 2.10. A constraint problem Pr is a finite set of freshness
constraints of the form a#?t (read: “is a fresh in t?”) and α-equality
constraints of the form s ≈α

? t (read: “is s α-equivalent to t?).

Example 2.3. Consider the constraint problem:

Pr = {a#? f (a), [b] f (a) ≈α
? [c] f (c)}

By using rules in Figures 2.1 and 2.2 we obtain derivations for the
constraints (without the question mark):

a#a(#f)
a# f (a)

a ≈α c
(F)

f (a) ≈α f (c)

(#ab)
c#a (# f)

c# f (a)
(Abs-b)

[b] f (a) ≈α [c] f (c)

[June 16, 2021 at 14:22 – v1.2.1]

20 nominal abstract syntax

• In the first derivation we need to show a#a, which is trivially
false.

• In the second, the premise from the left ask us to show that
a ≈α c which again is impossible. From the right we solve the
freshness constraint by ending the proof with the axiom (#ab).

We may conclude that the constraints in the problem are false. Let us
work on another example.

Example 2.4. Consider the problem Pr = {a#?(X λ[b]Y)} in the
signature of untyped λ-calculus. There is a derivation of the constraint
(without the ‘?’):

a#X

a#Y (#b)
a#[b]Y

(# f)
a#λ[b]Y

(# f)
a#(X λ[b]Y)

Note that the leaves of the derivation tree are the freshness constraints
a#X and a#Y. Therefore, if a#X and a#Y then we would get the desired
constraint, that is, a#X, a#Y ` a#(X λ[b]Y).

Instead of going back-and-forth from #? to ≈α
? and # and ≈α, we

introduce the set of Simplification Rules, first proposed by Urban,
Pitts, and Gabbay in [29] and later by Fernández and Gabbay in [18],
which implements a decision algorithm for solving nominal constraint
problems.

a#?b, Pr =⇒ Pr

a#?π · X, Pr =⇒ π−1(a)#?X, Pr π 6= id

a#?[a] t, Pr =⇒ Pr

a#?[b] t, Pr =⇒ a#?t, Pr

a#? f (t1, · · · , fn), Pr =⇒ a#?t1, · · · , a#?tn, Pr

a ≈α
? a, Pr =⇒ Pr

π · X ≈α
? γ · X, Pr =⇒ ds(π, γ)#X, Pr

f (s1, · · · , sn) ≈α
? f (t1, · · · , tn), Pr =⇒ s1 ≈α

? t1, · · · , sn ≈α
? tn, Pr

[a] t ≈α
? [a] u, Pr =⇒ t ≈α

? u, Pr

[b] l ≈α
? [a] r, Pr =⇒ (a b) · l ≈α

? r, a#l, Pr

Figure 2.3: Simplification rules for unification problems

The rules from Fig. 2.3 defines a reduction relation on problems.
Write Pr =⇒ Pr′ when Pr′ is obtained from Pr by the application of
a simplification rule, and write ∗

=⇒ for the transitive and reflexive
closure of =⇒ .

[June 16, 2021 at 14:22 – v1.2.1]

2.3 nominal constraint solving and unification 21

Example 2.5. Recalling Examples 2.3 and 2.4 and using the Simplifica-
tion Rules (Figure 2.3) we obtain the following reductions:

{a#? f (a), [b] f (a) ≈α [c] f (c)} ∗
=⇒ {a#a, a ≈α c}

{a#?(X λ[b]Y)} =⇒ {a#?X, a#?λ[b]Y} =⇒
{a#?X, a#?[b]Y} =⇒ {a#?X, a#?Y}

The entailment relation ∆ ` Pr establishes a notion of derivability
for problems under a consistent context. As we shall see in the next
definition.

Definition 2.11. Let ∆ be a consistent context. Write ∆ ` Pr when
a proof of C exist, for all C ∈ Pr, using the derivation rules from
Figure 2.1 and 2.2, and elements of ∆ as assumptions. We say that ∆
entails Pr, written ∆ ` Pr. In this case we say that ∆ is a solution of Pr.

termination of simplification rules . We now prove the
termination of the procedure generated by the application of simplifi-
cation rules.

Definition 2.12 (Size of terms/constraints).

1. The size of a nominal term t, denoted as |t|, is defined inductively
by:

|a| = 1

|[a] t| = 1 + |t|

|π · X| = 1

| f (t1, . . . , tn)| = 1 + |t1|+ · · ·+ |tn|
|π · t| = |t|

2. The size of a constraint is given by

|a#?t| = |t| and |t ≈α
? u| = |t|+ |u|

Lemma 2.7. The relation =⇒ defined by the Simplification Rules in
Figure 2.3 is terminating.

Proof. We consider the measure µ(Pr) of a constraint problem given by
the multiset of sizes of the constraints in Pr. We must show that when-
ever Pr =⇒ Pr′ the measure strictly decreases, i.e., µ(Pr) >mul µ(Pr′).
In fact, the rules decreases the measure since each rule either replace a
constraint by possible many simple ones or erase the constraint from
the problem. The interesting cases are for suspension and abstraction:

µ(π · X ≈α
? γ · X, Pr) ={|π · X|+ |γ · X|} ∪ µ(Pr)

>mul{|a#X| | a ∈ ds(π, γ)} ∪ µ(Pr)

µ([b] l ≈α
? [a] r, Pr) ={|[b] l|+ |[a] r|} ∪ µ(Pr)

>mul{|(a b) · l|+ |r|, |l|} ∪ µ(Pr)

The other cases follows from the same reasoning.

[June 16, 2021 at 14:22 – v1.2.1]

22 nominal abstract syntax

Corollary 2.2. The relation =⇒ is confluent.

Proof. Since the simplification rules do not overlap they are locally
confluent, by the Newman’s Lemma confluence follows by strong
normalization, Lemma 2.7.

As a consequence, the simplification rules define a function from
constraint problems Pr to their unique normal forms, denoted as
〈Pr〉nf.

Definition 2.13. We say an α-equality constraint u ≈α
? v is reduced

when one of the following holds:

1. u and v are distinct atoms. For example, a ≈α
? b is a reduced

α-equality.

2. u and v are applications with different term-formers (e.g. f (t) ≈α
?

g(s)).

3. u and v are two different variables (e.g π · X ≈α
? γ · Y are

reduced.)

4. u and v are different term constructors at the root. For example,
[a] s ≈α

? f (t).

Definition 2.14. We say a freshness constraint a#t is reduced when it
is of the form a#a or primitive, e.g. a#X. We call the first inconsistent.
Say a problem Pr is reduced when it consists of reduced constraints,
and inconsistent when it contains an inconsistent constraint.

Lemma 2.8. [Characterization of Normal Forms]

1.
〈

a#?s
〉
nf

is a context ∆.

Note that ∆ need not be consistent, i.e., 〈a# f (a)〉nf = {a#a}.

2.
〈

t ≈α
? u
〉
nf

is of the form ∆ ∪ Contr ∪ Eq, where ∆ is a consis-
tent context, Contr is a set of inconsistent reduced freshness
constraints, and Eq is a set of reduced equality constraints.

3. 〈Pr〉nf = ∆ ∪ Contr ∪ Eq, as above.

Proof. We check the simplification rules from Fig. 2.3 and note that a
problem is reduced if, and only if, it is in normal form.

Lemma 2.9.

1. If Pr ∗
=⇒ Pr′, then Γ ` Pr if, and only if, Γ ` Pr′.

2. Γ ` Pr if, and only if, Γ ` 〈Pr〉nf.

Proof.

1. The proof follows by induction on the number n of steps in the
simplification Pr ∗

=⇒ Pr′. In each inductive step there are 12

rules to consider.

The base case, n = 0, trivially holds.

[June 16, 2021 at 14:22 – v1.2.1]

2.3 nominal constraint solving and unification 23

For the inductive step, suppose Pr n−1
=⇒ Pr′′ =⇒ Pr′. There are

12 rules to consider, so we work on one case as an example. The
others follow the same reasoning:

By induction hypothesis Γ ` Pr iff Γ ` Pr′′, suppose that Pr′′

has the form

[b] l ≈α
? [a] r, Pr =⇒ (a b) · l ≈α

? r, a#l, Pr.

By inspection of the derivation rules we can conclude that Γ `
[b] l ≈α [a] r can only be derived by the rule (Abs-b), and it has
as proof obligation exactly Γ ` (a b) · l ≈α r and Γ ` a#l.

2. Follows directly from the first part since =⇒ is convergent, one
can reach the normal form after finitely many steps.

Lemma 2.10. If Γ is consistent and Γ ` Pr, then Pr is consistent.
Moreover, if Pr is in normal form, then it does not contain equality
constraints.

Proof. By Lemma 2.9, a consistent context cannot derive an inconsistent
Pr.

Theorem 2.5. Let Pr be a problem and consider 〈Pr〉nf its formal form,
i.e., 〈Pr〉nf = ∆ ∪ Contr ∪ Eq, and Γ be a consistent context. Then
Γ ` Pr if, and only if, Contr and Eq are empty.

Proof. By Lemma 2.9, Γ ` Pr if, and only if, Γ ` ∆, Contr, Eq. The
result now follows from Lemma 2.10 since Γ is consistent.

Theorem 2.6. Let Γ and ∆ be consistent contexts, and Pr and Pr′ be
any problems. Then

1. The algorithm generated by application of simplification rules is
correct: Γ ` Pr if, and only if, 〈Pr〉nf = ∆ and Γ ` ∆.

2. The entailment relation on problems satisfies a form of the cut
rule:

Γ ` ∆ Γ, ∆ ` Ψ
Γ ` Ψ

Proof.

1. Suppose Γ ` Pr. By Theorem 2.5, 〈Pr〉nf = ∆ and, by Lemma 2.9,
Γ ` ∆. Conversely, if 〈Pr〉nf = ∆ and Γ ` ∆, then using the same
results, it follows Γ ` Pr.

2. Suppose Γ ` ∆ and Γ, ∆ ` Ψ. Then, Γ ` C for each C ∈ ∆. Hence,
∆ ⊆ Γ and Ψ ⊆ Γ. Therefore, Γ ` Ψ, as required.

[June 16, 2021 at 14:22 – v1.2.1]

24 nominal abstract syntax

2.3.2 Equational Problems

In general, Equational Problems, i.e., problems in which the main predi-
cate is equality, usually splits into three cases:

– equality checking asks if two terms s and t are equal. A solution is
a value true or false.

– unification asks if two terms s and t can be made equal. A solution
is a substitution σ such that sσ = tσ.

– matching asks if a term s can be matched with some term t. A
solution is a substitution σ such that t = sσ.

In the nominal setting there is a version of these problems above as
well. This is expected since nominal is ‘equational’ in its very nature.
Note that we have studied the first problem in the previous subsection,
constraint solving solves the nominal equality check (α-equality check).
Since α-equality is defined in terms of the freshness predicate, all
solutions of the nominal versions of the problems above are restricted
to a freshness context. For instance, the α-equality checking problem
[a] X ≈α [b] X is true when restricted to the context a#X, b#X.

Several works have been done towards the solvability/decidability
of α-equality problems, and due to its importance it is useful to have
at least α-equality check and matching algorithms that run as fast as
possible.

In a nominal equational problem, terms s and t are called ground
if var(s, t) = ∅, linear if each variable occurs at most once and non-
linear if a variable can occur multiple times in s or t. In Table 2.1,
we transcribe the complexity of each one of these cases proposed by
Calvèz and Fernández [11].

Case Alpha-equivalence Matching

Ground linear linear

Non-ground and linear log-linear log-linear

Non-ground and non-linear log-linear quadratic

Table 2.1: Complexity of Matching and α-equality check.

2.3.3 Nominal Unification

As discussed above, nominal unification is the problem of deciding
whether two nominal terms can be made α-equivalent by instantiating
their variables. We usually are not interested only in a decision pro-
cedure but also in constructively building a substitution that solves
the problem. Urban, Pitts and Gabbay in [29] showed that nominal
unification is decidable, and gave an algorithm which finds the most
general solution (Definition 2.16) to a nominal unification problem, if
one exists. The nominal unification algorithm in [29] is very similar

[June 16, 2021 at 14:22 – v1.2.1]

2.3 nominal constraint solving and unification 25

with the classical Martelli and Montanari [7] approach to fist-order
unification: nominal unification problems are transformed by a set of
simplification rules on problems and the solution is computed along
the way.

Definition 2.15. A nominal unification problem Pr is a pair 〈∇, P〉
consisting of a consistent freshness context ∇ and a finite set P of
freshness constraints of the form a#?t and α-equality constraints (for
short, α-equations) of the form s ≈α

? t.

Definition 2.16. A solution for a nominal unification problem Pr =

〈∇, P〉 is a pair of the form 〈Γ, σ〉 where Γ is a consistent context and
σ a substitution such that the following conditions hold:

1. Γ ` ∇σ;

2. Γ ` a#tσ, for all a#?t ∈ P;

3. Γ ` tσ ≈α sσ, for all s ≈α
? t ∈ P;

4. Xσ ≡ Xσσ.

If there is no such 〈Γ, σ〉 we say that Pr is unsolvable.

Let Pr be a unification problem as above, U (Pr) denote the set of
all solutions of Pr. Solutions are compared by the following partial
order, called instantiation ordering.

Definition 2.17. Let Γ1 and Γ2 be consistent contexts, and σ1 and
σ2 substitutions. Then 〈Γ2, σ2〉 is an instance of 〈Γ1, σ1〉 on a set of
variables V ⊆ X, denoted by 〈Γ1, σ1〉 ≤V 〈Γ2, σ2〉, when there exists
some substitution δ such that

for all X ∈ V, Γ2 ` Xσ1δ ≈α Xσ2 and Γ2 ` Γ1δ

If we want to be more specific we may write 〈Γ1, σ1〉 ≤V
δ 〈Γ2, σ2〉.

In the rest of this work the set of variables V will consist of the
variables of the problem, i.e., V = var(Pr), and the superscript will
be omitted.

Lemma 2.11. The instantiation ordering ≤ defines a partial order on
U (Pr).

Proof. The proof can be found in [18], Lemma 29.

A least element of a partially ordered set is one which is related via
≤ to every element of the set.

Definition 2.18. A most general (or principal) solution to a problem
Pr is a least element of U (Pr).

[June 16, 2021 at 14:22 – v1.2.1]

26 nominal abstract syntax

unification algorithm . The nominal unification algorithm,
called unify in the next sections, consists of applying the simplification
rules, enriched with the instantiation rules given below, to a problem
Pr = 〈∆, P〉 until no more rules can be applied.

π · X ≈α
? t, Pr

[X/π−1·t]
=⇒ Pr[X/π−1 · t], if X /∈ vars(t)

t ≈α
? π · X, Pr

[X/π−1·t]
=⇒ Pr[X/π−1 · t], if X /∈ vars(t)

Remark 2.5. The instantiating rules above only deals equational con-
straints. If we have an equality constraint X ≈α

? t it is obvious we
should instantiate X to t, but there is no obvious most general in-
stantiation making the freshness constraints a#?X true since a fresh-
ness constraint a#X have the meaning: a cannot occur free in any
instance of X. This induces infinitely many substitutions, for instance,
X/ f (b), X/g(f (c)), . . ., therefore, we represent these infinitely many
possible substitutions by the constraint a#X, which says that we can
instatiate X to any term as long as it does not have free occurrences of
a.

Example 2.6. Consider the signature of lambda-calculus as in Exam-
ple 2.1 and the problem below. We apply the algorithm unif to the
problem to get:

{(λ[a] X)Z ≈α
? (λ[b]Y)b} =⇒ {λ[a] X ≈α

? λ[b]Y, Z ≈α
? b}

[Z/b]
=⇒ {λ[a] X ≈α

? λ[b]Y}
∗

=⇒ {(b a) · X ≈α
? Y, b#?X}

[Y/(b a)·X]
=⇒ {b#?X}

To form the solution pair 〈Γ, σ〉, we form Γ with the remaining con-
straints and take the composition of the labelled substitutions used
along the way of computation as σ.

Solution: 〈b#X, [Z/b, Y/(b a) · X]〉

Lemma 2.12. The unification procedure given by the simplification
rules from Fig. 2.3 and instantiating rules terminates.

Proof. We form a lexicographic measure on unification problems given
by µ′(Pr) = (n, µ(P)) where

– n is the number of variables of the problem,

– µ(P) is the multiset measure defined in Lemma 2.7.

Note that at each application of rules in a unification problem either
the number of variables decreases by one (decreasing the measure) or
the number of variales on the problem remains unchanded and the
complexity µ(P) decreases, as we have showed in Lemma 2.7.

Definition 2.19. A unification problem s ≈α
? t is reduced when one of

the following holds:

1. s and t are distinct atoms.

[June 16, 2021 at 14:22 – v1.2.1]

2.3 nominal constraint solving and unification 27

2. Precisely one of s and t is a moderated variable and the other
term mentions that variable.

3. s and t are applications with different term-formers.

4. s and t have different term constructors at the root and neither
is a moderated variable.

We call all reduced unification constraints inconsistent.

Normal forms are unique modulo renaming of variables, as in
standard first-order unification. The normal form of a unification
problem Pr by =⇒ is defined as expected and denoted by 〈Pr〉nf.
It consists of a set of equations and freshness constraints in reduced
form. Pr has a solution iff 〈Pr〉nf contains only consistent reduced
freshness constraints, i.e., freshness constraints of the form a#X.

Lemma 2.13 (Unification Normal Forms).

– 〈a#s〉nf = 〈〈a#s〉nf , id〉

–
〈

s ≈α
? t
〉
nf

= 〈∆ ∪ Contr ∪ Eq, σ〉, where ∆ is a consistent fresh-
ness context, Contr is an inconsistent freshness context, Eq is a
set of inconsistent unification constraints, and σ is a substitution.

Regarding the complexity of nominal unification, Calvèz and Fer-
nández [10] gave an polynomial implementation for the nominal
unification problem. However, the actual complexity of the problem is
still a open problem since Higher-order pattern unification, which is a
closely related problem [12], is linear [27].

matching problems In Chapter 3, we solve a matching problem
(in context). We briefly describe this kind of problems here. For an
efficient implementation the reader is referred to [11].

Definition 2.20. A matching problem (in context) is a pair (∆ ` t) ≈?

(∇ ` r), where ∇, ∆ are consistent contexts and t, r are nominal terms.
The solution to this matching problem, if it exists, is a substitution θ

such that:

–
〈
∇, t ≈α

? r
〉
nf

= 〈∆′, θ〉.

– ∆ ` ∆′.

– Xθ ≡ X for X ∈ vars(∆, t)

We say that θ solves the matching problem.

A matching problem can be seen as a particular kind of unification
problem. The conditions in the definition above ensure that: ∆ `
t ≈α rθ and ∆ ` ∇θ, and so 〈∆, θ〉 ∈ U

(
∇, t ≈α

? r
)

. We can think
of the solution to (∆ ` t) ≈? (∇ ` r) as a unification problem such
that it solves

〈
∆, t ≈α

? r
〉

without instantiating any variables in t.
Also, denote by matching((∆ ` t) ≈? (∇ ` r)) = θ the call for this
algorithm with solution θ.

[June 16, 2021 at 14:22 – v1.2.1]

28 nominal abstract syntax

Example 2.7.

1. Consider the matching problem b#X ` X ≈? Y, b#X ` (a b) ·
X ≈? Y.

{b#X, X ≈? Y, (a b) · X ≈? Y} [Y/X]
=⇒ {b#X, (a b) · X ≈? Y}
=⇒ {a#X, b#X}

Solution for the Unification problem: 〈{a#X, b#X}, [Y/X]〉

Notice that by the second condition of Definition 2.20 this
matching problem does not have a solution. In fact, one has
b#X 0 a#X, b#X.

2. Consider the problem b#X, X ≈? a, (b a) · X ≈? Y.

{b#X, X ≈? a, (b a) · X ≈? Y} [Y/(a b)·X]
=⇒ {b#X, X ≈? a, (b a) · X ≈? (a b) · X}

=⇒ {b#X, X ≈? a}

This problem also does not have a solution.

Remark 2.6. From the above examples one can see that Definition 2.20

does not express only matching modulo α-equivalence since we can
use ∇ to specify constraints which must be satisfied by the matching
solution. When the conditions in ∇ are satisfied we say the matching
is triggered.

[June 16, 2021 at 14:22 – v1.2.1]

3
N O M I N A L U N I V E R S A L A L G E B R A

This chapter concentrates on two important tasks: the first is that
of defining nominal algebras and give to them a semantic in nominal
sets [22]; the second is to show that a collection of these algebras is
equational (Definition 3.28) if, and only if, they form a variety [19]
(Definition 3.27); this is called HSP Theorem (Theorem 3.12).

3.1 a more general derivation system

An equality assertion is a pair t = u where t and u are terms. A
nominal theory T is a pair T = (Σ, Ax) consisting of a signature Σ
and a set of axioms (in the form of equality judgements) ∇ ` t = u,
with terms t and u built over Σ, and ∇ a consistent context.

Derivations in a theory T = (Σ, Ax) are defined by the rules in
Figures 2.1 and 3.3. We say Π is a valid derivation in T when the
following two conditions are satisfied:

• Π mentions only terms built over Σ.

• Π mentions only instances of (ax∇`t=u) such that (∇ ` t = u) ∈
Ax.

As in Chapter 2, ∆,∇, Γ . . . represent consistent freshness contexts.
Write ∆ ` s = t, if there exists a valid derivation Π using the elements
in ∆ as assumptions. We may abbreviate ‘∆ ` s = t is derivable in T’
to the affirmative statement ‘∆ `T s = t’.

Example 3.1. Let us consider some classical examples of nominal
theories.

(a) CORE is a family of theories with no axioms. Theorem 3.5 shows
that derivability in CORE (using rules from Figs. 2.1 and 3.3), i.e.,
∆ `CORE s = t, is equivalent to derivability in the theory of α-
equivalence (using the rules from Figs. 2.1 and 2.2), ∆ ` s ≈α t, as
defined in Chapter 2.

(b) In some applications of nominal algebra it is useful to explicitly
express the behavior of a capture avoiding substitution operator,
denoted by sub, in an algebraic treatment. Therefore, we define
below in Fig. 3.1 the axioms of the theory SUB, first introduced by
Gabbay in [20].

(c) Using the signature from Example 2.1 the theory LAM gives the
first complete algebraic treatment for the λ-calculus [21]. The
theory LAM is defined by the axioms for SUB together with a (β)-
axiom, to represent β-conversion, and an (η)-axiom, to represent
η-conversion, as defined below in Fig. 3.2.

29

[June 16, 2021 at 14:22 – v1.2.1]

30 nominal universal algebra

var 7→ ` a[a 7→ X] =X

(# 7→) a#Y ` Y[a 7→ Y] =Y

(f 7→) ` f (Y1, . . . , Yn)[a 7→ X] = f (Y1[a 7→ X], . . . , Yn(a 7→ X))

(abs 7→) b#X ` ([b]Y)[a 7→ X] =[b] (Y[a 7→ X])

(id 7→) ` Y[b 7→ b] =Y

(η 7→) a#X ` [a] sub(X, a) =X

For each term-former f (including sub), there is one axiom (f 7→).

Figure 3.1: Axioms for the theory SUB.

(β) ` (λ[a]Y)X =Y[a 7→ X]

(η) a#X ` λ[a] (X a) =X

Figure 3.2: Axioms for (β) and (η) conversion.

Observe that in the (η)-axiom the freshness side-conditions of
η-conversion

λx.(M x) =η M if x is not free in M

is expressed, in nominal syntax, as the freshness judgement a#X `
λ[a] (X a) = X.

(refl)t = t
t = u (symm)
u = t

s = u u = t (trans)s = t

t = u (cong[])
[a] t = [a] u

t = u (cong f)
f (t1, . . . , t, . . . , tn) = f (t1, . . . , u, . . . , tn)

∇πσ (ax∇`t=u)
tπσ = uπσ

a#t b#t (perm)
(a b) · t = t

[a#X1, . . . , a#Xn] ∆
...

t = u (fr) n ≥ 1,
a /∈ atms(t, u, ∆)t = u

Figure 3.3: Derivation rules for equality

[June 16, 2021 at 14:22 – v1.2.1]

3.1 a more general derivation system 31

The (fr) rule permit the introduction of freshness assumptions
[a#X1, . . . , a#Xn] into the derivation of t = u from assumptions ∆, for
the newly choosen atom a not occuring in t, u and ∆. These assump-
tions behave like in the introduction rule→i in natural deduction, they
need to be discharged. Assumptions are usually labelled with natural
numbers and get the same label for all assumptions on the same atom.
The rules (ref), (symm), and (trans) ensure that equality is in fact an
equivalence relation, whereas (cong[]) and (cong f) states that equality
is a congruence.

3.1.1 Instantiating Axioms

The reader may now have more intuition on the motivations for the
‘permutative convention’: atoms are identified by its name, so two
atoms a and b are always considered different objects. This convention
is embedded in the α-equality theory itself for instance a ≈α b cannot
be derived in CORE. But nominal theories permit the use of equality
axioms to generate theories that may have provable equality between
two atoms1. For example, from the theory T with a single axiom
` a = f (X) one may derive:

(ax`a= f (X))
a = f (X)[X/c]

a = f (c)

(ax`a= f (X))
(a b) · a = (a b) · f (X)[X/c]

b = f (c)
(symm)

f (c) = b
(trans)

a = b

In the derivation above dashed lines represent the computation of
substitutions and permutation actions when we instantiate the axiom
` a = f (X).

Note that by the form of the axiom rule, ∇πσ (ax∇`t=u)
tπσ = uπσ

, in
order to ‘instantiate’ the axiom ∆ ` t = u using a permutation π and
substitution σ one first is required to derive the proof-obligation ∇πσ.
For instance, the (η)-axiom for η-conversion in Fig. 3.2;

a#X ` λ[a] (X a) = X

states that ‘provided a is fresh for any instance of X one can derive
λ[a] (X a) = X’. The rule (axa#X`λ[a](X a)=X) (abbreviated as (axη) for
simplicity) derives an instantiated version of (η) provided one can
give derivations of the freshness condition (a#X)πσ. For example;

(#b)
a#b(η)

λ[a] (b a) = b
a#a

λ[a] (a a) = a

the derivation on the left is valid, whereas the derivation on the right
is not.

1 The permutative convention still remains valid: two atoms can be ‘provable equal’ in
a nominal theory but in our metamathematical setting for nominal techniques these
atoms are still considered different.

[June 16, 2021 at 14:22 – v1.2.1]

32 nominal universal algebra

3.1.2 Permutating Atoms: α-equivalence

The (perm) rule is used to express α-equivalence. To see this, the
following derivations are valid in CORE (the theory with no axioms):

(#a)
a#b(#b)

a#[b] b
(#b)

b#[b] b
(perm)

[a] a = [b] b
a#X(#b)

a#[b] X
(#a)

b#[b] X
(perm)

[a] (b a) · X = [b] X

Then `CORE [a] a = [b] b and a#X `CORE [a] (b a) · X = [b] X. To see
that the last step of the derivations above are really instances of (perm),
note that [a] a ≡ (b a) · [b] b and [a] (b a) · X ≡ (b a) · [b] X.

3.1.3 Proof-theoretical Results

In this section, we basically states the same results from Subsection
2.2.1. The proofs follow the same spirit as before but now in a more
general setting.

equivariance . The first important property about nominal theo-
ries is that derivations are closed under applications of permutations.

Definition 3.1. We extend notation for tπ and ∆π to nominal theories:
given a nominal theory T = (Σ, Ax) we write Tπ := (Σ, Axπ) where
Axπ is such that ∇π ` tπ = uπ ∈ Axπ if, and only if, ∇ ` t = u ∈ Ax.

We use the technical lemma below to reason about meta-level equiv-
ariance. That is, derivability of ∆ `T t = u is closed under the meta-
action Tπ of a permutation in the the theory T.

Lemma 3.1. If ∆ `T t = u then ∆ `Tπ t = u.

Proof. By induction on derivations, all cases are done by an analysis
of the last rule applied in the derivation of ∆ `T t = u. We work
on one non-trivial case, that is, the case for the axiom rule (ax∇`t=u).
Therefore, if the last rule applied is the axiom rule our derivation has
the form

∇γσ
tγσ = uγσ

and by induction hypothesis we need to show that

I.H
∆ `Tπ ∇γσ

∆ `Tπ tγσ = uγσ

By Lemma 2.2, this is equivalent to show that

∆ `Tπ ∇πγπ−1

σ

∆ `Tπ tπγπ−1

σ = uπγπ−1

σ

[June 16, 2021 at 14:22 – v1.2.1]

3.1 a more general derivation system 33

Finally, notice that this is nothing but an instance of (ax∇π`tπ=uπ)

taking as permutation γπ−1 and substitution σ, and using Lemma 2.2
in the same way as before.

Theorem 3.1 states that derivable equality is closed under permuta-
tion at the meta-level.

Theorem 3.1 (Meta-level equivariance). For any permutation π:

1. if ∆ ` a#t then ∆π ` π(a)#tπ,

2. if ∆ `T t = u then ∆π `T tπ = uπ.

Proof.

1. Follows directly from Equivariance (Theorem A.1).

2. Suppose ∆ `T t = u. By Equivariance (Theorem A.1) follows
that

∆π `Tπ tπ = uπ.

Now using Lemma 3.1 we obtain

∆π `
Tππ−1 tπ = uπ

Using Lemma 2.2 we conclude that Tππ−1

≡ Tππ−1 ≡ T, and
then

∆π `T tπ = uπ.

The next theorem is the analogous of Theorem 2.1 to general nomi-
nal theories.

Theorem 3.2 (Object Level Equivariance). For any permutation π:

1. if ∆ ` a#t then ∆ ` π(a)#π · t,

2. if ∆ `T t = u then ∆ `T π · t = π · u.

Proof. The proof is by induction on derivations, by an analysis of the
last rule applied.

1. It follows by the same proof given in Theorem 2.1, since freshness
derivations does not depend on the equational theory T we are
considering.

2. The proof follows the same lines of the proof for Theorem 2.1.
We work on the non-trivial case, that is, the case for axiom rule.

Suppose that the last rule applied is (ax∇`t=u):

Them ∆ `T tγσ = uγσ is derived from ∆ ` ∇γσ. The goal is to
derive

∆ `T π · tγσ = π · uγσ

[June 16, 2021 at 14:22 – v1.2.1]

34 nominal universal algebra

By the Commutation Lemma (Lemma 2.1) this is equivalent to
derive ∆ `T (π · tπ)σ = (π · uγ)σ. Now define a substitution σ′

that maps each X ∈ var(∆, t, u) to π · X, then by Lemma 2.3 we
have to derive

∆ `T tγπ
(σ′σ) = uγπ

(σ′σ).

By Lemma 2.2 this is equivalent to tπγ(σ′σ) = uπγ(σ′σ), and it
follows from (ax∇`t=u) by taking

∇πγ(σ′σ)
(ax∇`t=u)tπγ(σ′σ) = uπγ(σ′σ)

this is equivalent to

π · ∇γσ (ax∇`t=u)tπγ(σ′σ) = uπγ(σ′σ)

Finally, by the induction hypothesis, ∆ ` π · ∇πσ and the result
follows.

substitution and strengthening . We can apply a substitu-
tion of terms for variables provided those terms violate no freshness
assumptions imposed on the variables.

Theorem 3.3. Suppose ∆′, ∆ and σ are such that ∆′ ` a#tσ, for every
a#t ∈ ∆. Then, the following hold:

1. If ∆ ` a#t then ∆′ ` a#tσ.

2. If ∆ `T t = u then ∆′ ` tσ = tσ.

Proof. 1. It follows from the proof for the first part of Theorem 2.3,
since freshness derivations do not depends on the theory T.

2. The proof follows by induction on the derivation of ∆ `T t = u.
For (fr) we use Equivariance (Theorem A.1) to rename the freshly
chosen atom a if it is mentioned by ∆′, tσ or uσ.

With the next theorem we can remove freshness assumptions that
does not appear anywhere in s or t. This property is called strengthen-
ing.

Theorem 3.4 (Strengthening). Suppose a /∈ atms(s, t). Then:

1. ∆, a#X `T b#s implies ∆ `T b#s.

2. ∆, a#X `T s ≈α t implies ∆ `T s ≈α t.

Proof. The freshness case follows from the proof for Theorem 2.2, since
freshness derivations do not depend on the theory T, and note that
the equational case is exactly the rule (fr).

[June 16, 2021 at 14:22 – v1.2.1]

3.1 a more general derivation system 35

the equivalence (under derivability) of ≈α and CORE .
Example 3.1-(a) has described a nominal theory called CORE, i.e., the
theory without any axiom. The next theorem establishes connection
between derivability in the deduction system defining ≈α (rules in
Figs. 2.1 and 2.2) and derivability in the theory for CORE (rules in Figs.
2.1 and 3.3). This equivalence has an important application since ≈α

is practical for implementation purposes, on the other hand, CORE is
more suitable for theoretical purposes.

Theorem 3.5. ∆ `CORE t = u is derivable if, and only if, ∆ ` t ≈α u is
derivable.

Proof. Suppose ∆ `CORE t = u, the proof now follows from an induc-
tive reasoning on the depth of derivations. By using the induction
hypothesis it suffices to show:

1. ≈α is an equivalence relation and a congruence. This follows by
Theorem 2.4.

2. If ∆ ` a#t and ∆ ` b#t then ∆ ` (a b) · t ≈α t.

The proof can be found in Appendix B, Lemma B.4.

3. ∆, a#X1, . . . , a#Xn `CORE t = u where a /∈ atms(t, u, ∆) then ∆ `
t ≈α u. By induction hypothesis,

∆, a#X1, . . . , a#Xn ` t ≈α u

and the result follows by Strengthening (Theorem 2.2).

Conversely, the proof is by induction on the derivation of ∆ ` t ≈α u.
As usual, we do an analysis of the last rule applied in the derivation
of ∆ ` t ≈α u, we work on some cases:

1. The base case, ∆ ` a ≈α a, is proved in CORE as an instance of
(refl).

2. Suppose the last rule is (F): then by induction hypothesis we
get ∆ `CORE ti = ui for 1 ≤ i ≤ n, then ∆ `CORE f (t1, . . . , tn) =

f (u1, . . . , un) is derivable from instances of (trans) and (cong f).

3. The last rule if (Abs-a): then by induction hypothesis, ∆ `CORE
t = u then derive ∆ `CORE [a] t = [a] u by using (cong []).

4. The last rule is (Abs-b): the inductive hypothesis provide deriva-
tions Π of ∆ `CORE (b a) · t = u and Π′ of ∆ ` b#t. The following
derivation is a proof of ∆ `CORE [a] t = [b] u.

Π′

b#t(#b)
b#[a] t

(#a)
a#[a] t

(perm)
[b] (b a) · t = [a] t

(symm)
[a] t = [b] (b a) · t

Π
(b a) · t = u

(cong[])
[b] (b a) · t = [b] u

(tran)
[a] t = [b] u

[June 16, 2021 at 14:22 – v1.2.1]

36 nominal universal algebra

3.2 denotational semantics

We give the basic notions about nominal sets, which provide the un-
derlying set theory for which an interpretation of nominal terms and
algebras is more suitable. Nominal Sets enable the study of properties
which are invariant under permutation of names, and were originally
introduced by Gabbay and Pitts [23] but the mathematical foundations
goes back to the 30’s set theory and the logic of ZFA (based on the
Zermelo-Fraenkel). For more details, we adress the reader to [26].

3.2.1 Nominal Sets

Recall that we denote by A the set of all atoms and by P the set of all
permutations π : A → A with finite support. We give to P a group
structure by taking ◦ (permutation composition) as the operation in P.
To ease notation denote the group (P, ◦) just by P.

Definition 3.2. A P-action · on a set X is a function · : P× X → X,
written in infix notation as π · x, satisfying:

– id · x = x,

– π · (γ · x) = (π ◦ γ) · x, for all π, γ ∈ P and for all x ∈ X.

In this case, call the pair (X, ·) a P-set. We also say that the action · fix
x ∈ X when · acts trivially on x, i.e., π · x = x.

Example 3.2.

1. If P′ is any subgroup of P, we get a P′-action on the set of atoms
A by defining · as function application such that π · a = π(a).

2. In a more general setting we let Σ be a (single-sorted) algebraic
signature.Thus Σ = (Σn | n ∈ N) is a countable infinite family
of sets. The elements of each Σn are the n-ary operations of
the signature. We can then inductively build the set T(Σ, X) of
algebraic terms with variables from X using the rules:

x ∈ X

x ∈ T(Σ, X)
t1 ∈ T(Σ, X) · · · tn ∈ T(Σ, X) f ∈ Σn

f (t1, . . . , tn) ∈ T(Σ, X)

This is the way we usually construct terms for instance in first-
order languages.

There is an action of Sym(X) (the symmetric group of X) on Σ
given by applying a permutation to variables where they occur
in algebraic terms; as defined below:

π · x = π(x)

π · f (t1, . . . , tn) = f (π · t1, . . . , π · tn)

Note that in the case for the inductive construction of T(Σ, A, X)

this example agrees with Definition 2.3.

[June 16, 2021 at 14:22 – v1.2.1]

3.2 denotational semantics 37

The next definition plays an important role in the theory of nominal
sets, that is, the support of a element in a set equipped with an action.

Definition 3.3. Let (X, ·) be a P-set. A set of atomic names A ⊆ A is
a support for an element x ∈ X if, and only if, for all permutations
π ∈ P

(∀a ∈ A. π(a) = a) =⇒ π · x = x.

By considering a bijection between A→N we can use results from
the theory of groups to prove results about nominal sets. Consider the
classical theorem below.

Theorem 3.6 (Factorization of Permutations). Every permutation π ∈
Sn (the group of finite permutations of the elements {1, 2, . . . , n}) is a
product of transpositions.

Proof. It suffices to factor cycles:

(1 2 . . . r) = (1 r)(1 r− 1) . . . (1 2)

This theorem can be translated via the bijection A → N to the
following statement about permutation of names.

Theorem 3.7 (Factorization of Nominal Permutations). Every permu-
tation π ∈ P is a product of swappings

π = (a1 ar)(a1 ar−1) . . . (a1 a2)

As a corollary,

π(a1) 6= a1, a1 6= ai, 1 < i ≤ r, and ai 6= π(ai) (3.1)

We use the theorem above to derive the following characterization
of support in terms of swappings.

Lemma 3.2. Let X be a P-set and x ∈ X. A subset A ⊆ A supports x,
if and only if,

∀a1, a2 ∈ A \ A. (a1 a2) · x = x. (3.2)

Proof. Notice that if a1, a2 ∈ A \ A then (a1 a2) · a = a holds for any
a ∈ A. Therefore, if A supports x then for all permutation π that f ix
every element of A, π also fix x. In particular, (a1 a2) · x = x since
(a1 a2) fix A, and hence (3.2) holds.

Conversely, suppose A satisfies (3.2) and take a permutation π fixing
every element of A. We must show that π fixes x. By Theorem 3.7,
π can be written as the composition π = (b1 br−1)(b1 br−2) . . . (b1 b2)

satisfying (3.1). Since π fixes every elements of A, each swapping is
such that a1, bi /∈ A and hence by (3.2), (a1 bi) fixes x. Therefore, π

must also fix x since it is the composition of all the (a1 ai), and hence
A supports x.

[June 16, 2021 at 14:22 – v1.2.1]

38 nominal universal algebra

Clearly each element of a P-set is supported by A, which is an
infinite set. We will be interested in elements that are finitely supported
in the sense that there is some finite set of atomic names that is a
support for the element.

It can be shown [26, Theorem 2.7] that if an element x of a P-set
X has finite support then there is a unique least finite set of atoms
A ⊆ A that supports x.

Definition 3.4. Let (X, ·) be a P-set and x ∈ X. Denote by supp(x) the
least set of atoms supporting x.

We also use the following characterization of support:

supp(x) = {a ∈ A | {b ∈ A | (a b) · x 6= x} is not finite} (3.3)

Thus, for any a ∈ A, a /∈ supp(x) holds if, and only if, (a b) · x = x
holds for all, but finitely many b ∈ A.

Definition 3.5. A nominal set X is a P-set (XS, ·) such that all elements
x ∈ X have finite support. In this case we also say that X is finitely
supported.

notation : We may denote a nominal set X = (XS, ·) just by X
when no confusion arises, the set XS is called the underlying set of the
nominal set X.

Example 3.3.

1. The set A of all atoms, with action defined by π · a = π(a) is a
nominal set; the support of a is {a}.

2. The set Λ of all λ-terms (Example 2.1), with action defined by
Definition 2.3, has finite support. It turns out that the support of
a λ-term is the set of atoms occuring in it.

3. The powerset P(A) = {X | X ⊆ A}, with action π · X =

{π · a | a ∈ X}, is not a nominal set. To see this let us order
A as {a1, a2, a3, . . . } and consider X = {a1, a3, a5, . . . } ∈ P(A).
We claim that there is no finite set A of atoms supporting X. To
prove this claim, we suppose that is not the case, i.e., there is A =

{b1, . . . , bn} that supports X. Then, choose any pair c2k, c2k+1 ∈
A \ A, it follows that (c2k c2k+1) · X 6= X, a contradiction with
Lemma 3.2.

4. We say that X ⊆ A is cofinite if A \ X is finite. The set Pfs(A) of
finite and cofinite subsets of A with action inherited from P(A)

is a nominal set. The support is calculated in Example 3.4.4.

5. If X and Y are nominal sets then their disjoint union X + Y :=
{x ∈ X | x /∈ Y} ∪ {y ∈ Y | y /∈ X} is a nominal set.

6. If X and Y are nominal sets then the product X×Y = {(x, y) |
x ∈ X ∧ y ∈ Y} with action defined as in Definition 3.7 is a
nominal set. The support of (x, y) is the union of the supports
of x and y.

7. The empty set is a nominal set.

[June 16, 2021 at 14:22 – v1.2.1]

3.2 denotational semantics 39

3.2.2 Semantic Freshness

In many applications of nominal sets one is more interested (like in
our case) in the complementary notion of an atom a being in the
support of an element x ∈ X.

Definition 3.6. Given nominal sets X and Y, and elements x ∈ X and
y ∈ Y. Define the predicate #sem, written as x #sem y, and say that x is
fresh for y if the two elements have disjoint support, that is:

x #sem y ⇐⇒ supp(x) ∩ supp(y) = ∅

Write a #sem x when a /∈ supp(x), and say a is fresh for x.

Example 3.4.

1. We have distinct notations for freshness: the first is freshness in
the nominal syntax, written just as #, and the second we denote
by #sem to describe semantic freshness.

2. The set A of all atoms with action π · a = π(a) is a nominal set;
the support of an atom a ∈ A is just {a}. Note that for x, y ∈ A,
x #sem y precisely when x 6= y.

3. If a ∈ A and X is a nominal set with x ∈ X, we write a #sem x
when a /∈ supp(x).

4. The support of A \ {a} ∈ Pfs(A) is {a} so b #sem A \ {a} but
not a #sem A \ {a}.

The finiteness of support compared with the infiniteness of A leads
to the following principle for choices of new names.

choose-a-fresh-name principle If X1, . . . , Xn are finitely many
nominal sets and if x1 ∈ X1, . . . , xn ∈ Xn are elements of them, then
there is an atomic name a ∈ A satisfying a #sem x1 ∧ · · · ∧ a #sem xn.

Lemma 3.3. Let x ∈ X be an element of a nominal set X. For all
a, b ∈ A, if a #sem x, b #sem x then (a b) · x = x.

Proof. Since a #sem x and b #sem x, we have that a, b /∈ supp(x). The
result now follows from Lemma 3.2.

The next lemma states that the properties from derivable (syntactic)
freshness (#) extends in a natural way to semantic freshness (#sem).

Lemma 3.4. Suppose x, y ∈ X and X a nominal set. Then,

1. If x = y then a #sem x iff a #sem y.

2. If a #sem x for every a ∈ ds(π, γ) then π · x = γ · x.

3. If a #sem x then π(a) = π · x.

4. If x = y then π · x = π · y.

Proof.

[June 16, 2021 at 14:22 – v1.2.1]

40 nominal universal algebra

1. If x = y, then supp(x) = supp(y). Therefore, a #sem x if, and only
if, a #sem y.

2. We have that a /∈ supp(x) for each a ∈ ds(π, γ). Therefore,
π · x = γ · x.

3. Follows directly from Equivariance (Theorem A.1).

From Example 3.3-(3) we can seee that a #sem X does not imply
that a #sem x for every x ∈ X. But for those subset that are finitely
supported we have:

Lemma 3.5. Let X be a nominal set and Y ⊆ X finitely-supported. If

a1 #sem Y, . . . , an #sem Y

then there exists some y ∈ Y such that a1 #sem y, . . . , an #sem y.

Proof. Fix any y′ ∈ Y. By the Choose-a-Fresh-Name-Principle there
is a choice b1, . . . , bn of fresh names such that bi #sem Y and bi #sem y′,
for 1 ≤ i ≤ n. Then by Part 2 of Lemma 3.4 (b1 a1) · · · (bn an) ·Y = Y.
Define y = (b1 a1) · · · (bn an) · y′, note that this element is in Y by
Definition 3.2, and we conclude ai #sem x for 1 ≤ i ≤ n by Part 3 of
Lemma 3.4 and the assumption bi #sem y.

3.2.3 Products

We now study one way to build new nominal sets from given nominal
sets X1, . . . , Xn, i.e., by taking the cartesian product of these sets and
defining a suitable product action. The cartezian product is used to
construct products nominal algebras later in this chapter.

Definition 3.7. Given P-sets X1, . . . , Xn we make the cartesian product

X1 × · · · × Xn := {(x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn}

into a P-set by defining the action coordinate-wise:

π · (x1, . . . , xn) := (π · x1, . . . , π · xn)

When X1, . . . , Xn are the same P-set we write the product as usual:
Xn.

Definition 3.8. Let I be a countably infinite set and (Xi)i∈I an I-
indexed collection of nominal sets. Write

Πi∈I Xi := {(xi | i ∈ I) | ∀i ∈ I. xi ∈ Xi}

for the cartesian product of the family (Xi)i∈I . Equip this set with the
component-wise permutation action,

π · (xi)i∈I = (π · xi)i∈I .

This next result follows directly from the definition above.

Lemma 3.6. a #sem (xi)i∈I if, and only if, a #sem xi for every i ∈ I.

[June 16, 2021 at 14:22 – v1.2.1]

3.3 nominal algebra 41

3.2.4 Equivariant Functions

If (X, ·) and (Y, ·) are P-sets we say that f defines a function f ∈
(X, ·)→ (Y, ·) if it is a function on underlying sets, i.e., f ∈ X → Y.

Definition 3.9. Suppose that X and Y are nominal sets. A function
f ∈ X → Y is equivariant if for all permutations π ∈ P:

π · f (x) = f (π · x)

Lemma 3.7. Suppose f : X → Y is an equivariant function between
the nominal sets X and Y. Then if A is a support for x ∈ X, then it is
a support for f (x) ∈ Y. In particular,

supp(f (x)) ⊆ supp(x).

Proof. Suppose A ⊆ A supports x ∈ X, and let π be a permutation
such that π fixes every element of A. By Definition 3.3, π · x = x and
hence f (x) = f (π · x) = π · f (x) since f is equivariant. Thus A also
supports f (x) in Y. Therefore if X and Y are nominal sets and x ∈ X,
then supp(x) supports f (x) and hence contains the smallest support,
supp(f (x)).

Corollary 3.1. If a #sem xi, for i ≤ i ≤ n, then a #sem f (x1, . . . , xn).

3.3 nominal algebra

We use nominal sets to give a semantics to nominal algebra signature
and theories. This choice is adequate, since nominal sets better repre-
sent directly the notion of freshness and permutation action. We begin
by saying what we mean by nominal algebra.

Definition 3.10. [Σ-algebra] A nominal Σ-algebra A consists of:

1. A domain nominal set A = (AS, ·) with underlying set AS and
action ·.

2. An equivariant map atom : A→ AS to interpret atoms; we write
the interpretation atom(a) of a as aA ∈ A.

3. An equivariant map abs : A × AS → AS such that a #sem
abs(a, x) always, to interpret abstraction.

4. An equivariant map fA : An
S → AS for each term-former f : n ∈

Σ to interpret term-formers.

Nominal Algebras are usually denoted by A,B.

As expected, a valuation ς in a Σ-algebra A maps unknowns X to
elements ς(X) ∈ AS. Below we define a equivariant function J·K to
interpret nominal terms.

[June 16, 2021 at 14:22 – v1.2.1]

42 nominal universal algebra

Definition 3.11. LetA be a nominal algebra. Suppose that t ∈ T(Σ, A, X).
The interpretation of t with relation to the valuation ς in A, denoted
as JtKAς , is defined inductively by:

JaKς = aA Jπ · XKς =π · ς(X) J[a] tKς = abs(a, JtKς)

J f (t1, . . . , tn)Kς = fA(Jt1Kς , . . . , JtnKς)

The interpretation JtKAς may be written just by JtKς if A is under-
stood.

Lemma 3.8. Let A be a Σ-algebra and ς a valuation to the domain AS.
Then π · JtKς = Jπ · tKς.

Proof. The proof is a standard induction on the structure of t, see
Lemma B.5 for a complete proof.

Definition 3.12. Suppose that A is a Σ-algebra. Define the notion of
validity by:

a) J∆KAς is valid when a #sem ς(X) for each a#X ∈ ∆.

b) J∆ ` a#tKAς is valid when the validity of J∆KAς implies a #sem JtKAς ,
and

c) J∆ ` t = uKAς is valid when the validity of J∆KAς implies JtKAς =

JuKAς .

A model of a theory T is a Σ-algebra A such that J∆ ` t = uKAς is
valid for every axiom ∆ ` t = u in Ax and every valuation ς.

Definition 3.13. For a nominal theory T, define the validity with respect
to T for judgements form as follows:

1. Write ∆ |=T a #sem t when J∆ ` a#tKAς for all models A of T.

2. Write ∆ |=T t = u when J∆ ` t = uKAς for all models A of T.

Note that, in constrast with derivable freshness #, for which the
theory T does not matter at all, semantic freshness #sem does depend
on the theory T. We will see an example later, first we need to build
some more structures and prove some results.

3.3.1 Soundness

An important property one seeks in a logical framework is that of the
equivalence between syntactic operations and operations on semantic
models of that language, this is called Soundness.

To ilustrate, consider the theory LAM defined in Example 3.1. If one
builds a derivation in LAM showing that λ[a] (b a) = a it is desirable
that this equality is valid in all models (Σ-algebras) of LAM. That is
the meaning of soundness: whenever manipulation done following
the derivation rules of the system (Figs. 2.1 and 3.3) produce sound
equalities inside all models of T.

[June 16, 2021 at 14:22 – v1.2.1]

3.3 nominal algebra 43

Soundness results have also an practical application: its possible to
reason about equality on semantic objects (in our case, inside nominal
algebras) in an automated way. We put computers to manipulate
symbols, they are very good at it, and prove that these syntactic
operations are indeed sound. The next theorem says that Nominal
Algebra is indeed sound for freshness and equality derivations.

Theorem 3.8 (Soundness). Let T = (Σ, Ax) be a theory. Then:

1. If ∆ ` a#t then ∆ |=T a #sem t.

2. If ∆ `T t = u then ∆ |=T t = u.

Proof. Let A be a model of T. We must show that if a#t (resp. t = u)
is derivable from ∆ using the rules from Figs. 2.1 and 3.3, then J∆Kς

implies a #sem JtKς (resp. JtKς = JuKς) for any valuation ς. In both cases
the proof is by induction on the depth of the derivation ∆ ` a#t and
∆ ` t = u.

1. Let Π be a derivation of ∆ ` a#t.

For the base case, suppose Π ends with the axiomatic rule (#a).
Then a#b is derivable (and a 6= b). It must be shown that a #sem
bA, note that this folows from Example 3.4, Item 2.

For the inductive step:

a) If Π ends with the application of (#X):

The inductive hypothesis gives us π−1(a) #sem ς(X) and we
conclude a #sem π · ς(X) by equivariance.

b) If Π ends with (#a) then a #sem abs(a, JtKς), by Definition
3.10.

c) The cases for (#b) and (# f) follow directly from the induc-
tion hypothesis and by Lemma 3.7.

2. Let Π be a derivation of ∆ ` t = u.

The cases for (refl), (symm), (trans), (cong []) and (cong f) follow
easily by properties of equality.

For the inductive step:

a) If Π ends with an application of (perm):

By induction hypothesis, a #sem JtKς and b #sem JuKς. From
Lemma 3.3 follows that (a b) · JtKς = JuKς, finally by equiv-
ariance (Lemma 3.8) one get Jπ · tKς = JtKς.

b) If Π ends with an application of (ax∇`t=u):

Suppose J∇πσKς for any ς. Then π(a) #sem (Xσ)ς holds for
all a#X ∈ ∇. By equivariance, a #sem π−1 · JXσKς for all
a#X ∈ ∇. Let ς′ be defined by

ς′(X) = π−1 · JXσKς , for every X.

Then a #sem ς′(X) for all a#X ∈ ∇, so J∇Kς holds. Since
∇ ` t = u is an axiom of T, we know JtKς′ = JuKς′ . By

[June 16, 2021 at 14:22 – v1.2.1]

44 nominal universal algebra

the Item (4) of Lemma 3.4, π · JtKς′ = π · JuKς′ also holds.
Equivariance give us Jπ · uKς′ = Jπ · uKς′ . By a standard
induction reasoning on the syntax of terms one can show
Jπ · tKς′ = JtπσKς and Jπ · uKς′ = JtπσKς to finally conclude
JtπσKς = JuπσKς.

c) Suppose Π ends with (fr):

Then ∆ `T t = u is derived from ∆, a#X1, . . . , a#Xn ` t = u,
where a /∈ atms(∆, t, u). By ZFA Equivariance (Theorem
A.1), applyed considering the derivability relation `T, the
following is provable for a′ not occuring in atms(∆, t, u).

∆, a′#X1, . . . , a′#Xn `T t = u

We also retain the inductive hypothesis for ∆, a′#X1, . . . , a′#Xn `T

t = u by ZFA Equivariance. Now, by the Choose-a-Fresh-
Name Principle select an atom a′ /∈ atms(∆, t, u) such that
a′ #sem ς(Xi) for 1 ≤ i ≤ n. Then by the inductive hypothe-
sis, q

∆, a′#X1, . . . , a′#Xn `T t = u
y

ς
.

But this is equivalent to J∆ `T t = uKς since
q

a′#X1, . . . , a′#Xn `T t = u
y

ς
,

and the result follows.

3.3.2 The Ground Initial Algebra F(T,D)

A very known strategy to build models for equational theories is
to add constants in the signature to construct an infinite number of
elements of the language and then quotient these elements by provable
equality. In the nominal setting, adding a term-former with arity zero
only give us a supply of elements with empty support (a#d is derivable
for every a ∈ A and d : 0). In this section, we study a way to build
an initial nominal algebra with such extra elements but with nonempty
support.

As in [19], let D be a set of term-formers disjoint from Σ, they are
called ‘extra term-formers’. Then the set F(Σ,D) of ground nominal
terms is generated by the grammar:

g ::= a | [a] g | f (g1, . . . , gn) | d(a1, . . . , am)

Where f : n range over elements of Σn and d : m ranges over elements
of Dm.

Remark 3.1. Note that the initial ground (nominal) algebra is the
analogous in nominal setting to the initial first-order ground algebra
T(Σ)�E, where E is a set of equational axioms. In what follow we will
see how to effectively build a nominal algebra from this set of ground
terms.

We first give to F(Σ,D) a P-set structure by defining the action of a
permutation π on g ∈ F(Σ,D) exactly as in Definiton 2.3.

[June 16, 2021 at 14:22 – v1.2.1]

3.3 nominal algebra 45

Lemma 3.9. The set F(Σ,D) of ground terms is a nominal set with
the P-action as above. Moreover supp(g) = {a ∈ A | a ∈ atms(g)}.

Proof. We need to show that every g ∈ F(Σ,D) has finite support.
Consider the equation (3.3) and note that precisely when a ∈ atms(g),
the set {b ∈ A | (a b) · x 6= x} is not finite.

Corollary 3.2. As a corollary, a /∈ atms(g) if, and only if, a #sem g.

Proof. Follows directly from Lemma 3.9.

Lemma 3.10. Let g ∈ F(Σ,D) then a /∈ atms(g) implies ` a#g.

Proof. By induction on the structure of g using the rules from Fig.
2.1.

Definition 3.14. Write (congd) for an instance of the (cong f) rule
when f ∈ D. We denote by [g]T the set of ground terms g′ such that a
derivation of `T g = g′ exists that does not mention (congd) for any
d ∈ D.

Note that the set [g]T has the meaning of ‘derivable ground equality’;
we denote by F(T,D) = {[g]T | g ∈ F(Σ,D)} the set of all such [g]T,
sometimes called the set of all ground terms up to T. We give to F(T,D)
a P-set structure by defining the P-action π · [g]T = [π · g]T. The finite
(Lemma 3.10) support of [g]T is the set {a ∈ A | 0 a#g}. Therefore,
F(T,D) is a nominal set. Note also that if ` a#g then a #sem [g]T. Next
we prove a technical lemma.

Lemma 3.11. Let [g]T ∈ F(T,D). Then a1 #sem [g]T, . . . , an #sem [g]T if,
and only if, there exists some g′ ∈ [g]T such that ` a1#g′, . . . ,` an#g′

are all derivable.

Proof. Suppose a1 #sem [g]T, . . . , an #sem [g]T. Lemma 3.5 ensures the
existence of g ∈ [g]T such that a1 #sem g′, . . . , an #sem g′. So by Lemma
3.9 ai /∈ atms(g′) and by Lemma 3.10 we conclude ` a1#g′, . . . ,`
an#g′.

Now we have in hand all ingredients to build the so promised
‘nominal initial algebra’. The construction is analogous to the first-
order definition of algebras out of terms quotiented by derivable
equality.

The initial algebra F(T,D) is defined overloading the notation from
the set of all elements [g]T, but this should cause no confusion since
one can easily distinguish the algebra F(T,D) from its domain set
F(T,D) = {[g]T | g ∈ F(Σ,D)} from the context.

Definition 3.15. Let T = (Σ, Ax) be a theory and D a possible empty
set of term-formers disjoint from Σ. The initial algebra of T over D is
the Σ-algebra with:

1. Domain nominal set as F(T,D) = {[g]T | g ∈ F(Σ,D)}.

2. Interpretation of atoms aF(T,D) = [a]T

3. Interpretation of abstraction abs(a, x) = [[a] g]T for some g ∈ x.

[June 16, 2021 at 14:22 – v1.2.1]

46 nominal universal algebra

4. Interpretation of functions given by

f F(T,D)(x1, . . . , xn) = [f (g1, . . . , gn)]T

for some g1 ∈ x1, . . . , gn ∈ xn, for each term-former f : n ∈ Σ.

Lemma 3.12. Under the same conditions as in Definition 3.15, F(T,D)
is a (nominal) Σ-algebra.

Proof sketch. We have showed that the domain set F(T,D) = {[g]T |
g ∈ F(T,D)} is a nominal set. For the interpretation functions it must
be shown that they are well defined, i.e., the choices for g ∈ x and
g1 ∈ x1, . . . , gn ∈ xn does not matter, and that they are equivariant.
Finally, we must show that a #sem abs(a, x) holds always. For a full
detailed proof see [19, Lemma 6.11].

Lemma 3.13. Consider t ∈ F(Σ,D) as above. Suppose that Xσ ∈
F(Σ,D) for every X ∈ vars(t). Lets ς be a valuation to the domain
F(T,D) such that Xσ ∈ ς(X) for every X ∈ vars(t). Then [tσ]T = JtKς.

Proof. By a standard induction on the structure of t. The proof can be
found in Appendix B, see Lemma B.6.

Theorem 3.9. Let T be a nominal theory. The initial algebra F(T,D)
is a model of T.

Proof. The proof can be found in the Appendix B, see Theorem B.1.

Example 3.5. Consider the theory ATOM with one axiom ` a = b.
Notice that a #sem [a]ATOM, since [a]ATOM = A. Its not hard to verify that
this property holds for all models J·K of ATOM. Hence, |=ATOM a#a but
also 0 a#a.

This example has an immediate consequence on completeness of
nominal algebra under freshness derivations, i.e., we can show that
a #sem [a]ATOM but not `T a#a. In general, ∆ |=T b #sem t does not imply
∆ ` t necessarily.

3.3.3 Completeness for Equality Derivations

For this subsection, fix a signature Σ, a theory T = (Σ, Ax), Σ-terms
t, u, and a freshness context ∆. We study the completeness of nominal
algebra for equality derivations, i.e., if ∆ |=T t = u then ∆ `T t = u.
We state this result as Theorem 3.10 below and take the rest of this
subsection to prove it.

Theorem 3.10 (Equality Completeness). If ∆ |=T t = u then ∆ `T t =
u.

To prove the completeness theorem we study a somewhat nontrivial
construction, but the main idea is quite simple: we only need a specific
model and a specific valuation to this model that preserves sufficient
information on the semantics of ∆ |=T t = u to allow us to reconstruct
a syntactic derivation of ∆ `T t = u.

We begin by separating the sets of variables and atoms occuring in
∆, t, u, and use the sets below to regain informations about the atoms
and variables used in the semantic equality ∆ |=T t = u.

[June 16, 2021 at 14:22 – v1.2.1]

3.3 nominal algebra 47

Definition 3.16. Let X = var(∆, t, u) and let A = atms(∆, t, u). For
each Xi ∈ X :

– let aXi1 , . . . , aXik be the atoms in A (in some arbitrary but fixed
order) such that aXil #Xi /∈ ∆; for all 1 ≤ l ≤ k.

– let dX : k be a term-former.

For each unknown X /∈ X , let dX : 0 be a term-former, and consider
the set D of all dX, for each unknown X ∈ X.

Definition 3.17. Let σ be the following substitution:

Xσ = dX(aXi1 , . . . , aXik) (X ∈ X)

Xσ = dX() (X /∈ X)

The fixed model we shall consider, perhaps with no surprises, is the
initial algebra F(T,D) with D as defined in Definition 3.16 above and
the valuation ς given by ς(X) = [Xσ]T.

The reader may ask: why do we consider this model? The answer is
also quite simple: initial models have the beauty of simplicity. Elements
of F(T,D) are ground representations of provable equality within the
theory T and freshness constraints are decidable just by looking in
the syntax of the equality representatives, since there is no need to
consider freshness assumptions of the form a#X.

The model F(T,D) is just simple enough and still carry all informa-
tion about the equality assertions made by the axioms of the theory.
Let us begin with some technical results.

Lemma 3.14. [tσ]T = JtKF(T,D)
ς and [uσ]T = JuKF(T,D)

σ .

Proof. We show that [tσ]T = JtKF(T,D)
ς by induction on the syntax of t,

we work on the two most interesting cases:
Suppose t ≡ π · X, with X ∈ X :

[π · Xσ]T = [π · dk(~a)]T Jπ · XKς = π · ς(X)

= π · [dk(~a)]T = π · [Xσ]T

= π · [dk(~a)]T

Suppose t ≡ [a] t, we have:

[[a] tσ]T = abs(a, [tσ]T) J[a] tKς = abs(a, JtKς)

IH
= abs(a, [tσ]T)

The initial model validates the freshness constraints in ∆. This is
ilustraded in Lemma 3.15 below.

Lemma 3.15. J∆KF(T,D)
ς is valid.

Proof. Suppose a#Xi ∈ ∆, we must show that a #sem ς(Xi). By Def-
inition 3.16, Xi ∈ X so ς(X) = [dX(aXi1 , . . . , aXik)]T. But also a /∈
{aXi1 , . . . , aXik} by construction; trivially, a /∈ atms(dX(aXi1 , . . . , aXik)),
hence by Lemma 3.10, ` a#dX(aXi1 , . . . , aXik) is derivable. Finally, by
Lemma 3.11 we get a #sem [dX(aXi1 , . . . , aXik)]T as required.

[June 16, 2021 at 14:22 – v1.2.1]

48 nominal universal algebra

Definition 3.18. Let Π be a derivation of `T tσ = uσ without using
(congd). Let A′ be A extended with:

– atoms mentioned anywhere in Π;

– a set B of fresh atoms, in bijection with A, fixed as aXil 7→ bXil .

– one fresh atom c such that c doest not occur in A, Π,B.

Remark 3.2. Note that in the definition above the existence of the the
atoms in B and the fresh atom c is due to the Choose-a-Fresh-Atom-
Principle.

Let ∆′ be ∆ extended with freshness assumptions a′#X for every
X ∈ X and a′ ∈ A′ \ A. For the rest of this subsection let g, h range
over arbitrary ground terms g and h over F(Σ,D) that mentions only
atoms from A′ \ (B ∪ {c}).

Definition 3.19. Define an inverse mapping (−)−1 from ground terms
as above to terms in Σ inductively as follows:

a−1 ≡ a ([a] g)−1 ≡ [a] g−1 f (g1, . . . , gn)
−1 ≡ f (g−1

1 , . . . , g−1
n)

dX(a′Xi1
, . . . , a′Xik

)−1 ≡ πX(a′Xi1
, . . . , a′Xik

) · X (Xi ∈ X)

dX()
−1 ≡ c (Xi /∈ X)

With the abbreviation

πX(a′Xi1
, . . . , a′Xik

) := (a′Xi1
bXi1) · · · (a′Xik

bXik)(bXi1 aXi1) · · · (bXik aXik)

The inverse mapping is equivariant over the atoms we care about,
i.e., atoms in A′ \ (B ∪ {c}).

Lemma 3.16. Let π be a permutation that only mentions atoms from
A′ \ (B ∪ {c}), then ∆′ `CORE (π · g)−1 = π · g−1.

Proof. We reason by induction on the structure of the ground term
g. The base case is trivially true using Definition 3.19. The only non-
trivial inductive step is when g ≡ dX(a′Xi1, . . . , a′Xik) with X ∈ X . We
must show

∆′ `CORE πX(π(a′Xi1), . . . , π(a′Xik)) · X = (π ◦ πX(a′Xi1
, . . . , a′Xik

)) · X

By Lemma 2.6 it suffices to show

∆′ ` ds(πX(π(a′Xi1), . . . , π(a′Xik)), π ◦ πX(a′Xi1
, . . . , a′Xik

)))#X.

Notice that π doest not mention any of the bXil , so π takes an atom
a′Xil

and maps it to a′Xij
, hence ds(πX, π ◦ πX) ⊆ A′, and the results

follows.

Lemma 3.17. ∆′ `CORE (tσ)−1 = t and ∆′ `CORE (uσ)−1 = u

Proof. It suffices to prove `CORE (vσ)−1 = v for each subterm v of t and
u. We do this by induction on the structure of v. The most interesting
case is when v = π ·X, i.e., we need to show that ∆ `CORE (π ·Xσ)−1 =

π · X. This is equivalent to

∆′ ` ds(πX(π(aXi1), . . . , π(aXik)), π)#X

which is true by an analysis analogous from the Lemma 3.16 above.

[June 16, 2021 at 14:22 – v1.2.1]

3.3 nominal algebra 49

Corollary 3.3. If ∆ `T g−1 = h−1 then `T g = h.

Proof. By Lemma 3.17 and transitivity (tran).

The next Lemma shows how to construct a derivation of ∆ `T t = u
from a ground derivation of `T tσ = uσ. This is almost what we need
for a complete derivation of ∆ `T t = u using the semantic of F(T,D).

Lemma 3.18. If `T tσ = uσ without using (congd) then ∆ `T t = u.
For freshness, if ` a#tσ then ∆ ` a#t.

Proof. Suppose we could transform a derivation Π of `T tσ = uσ

(` a#tσ) into a derivation of ∆′ `T (tσ)−1 = (uσ)−1 (∆′ ` a#(tσ)−1).
Given that, the result follows from Lemma 3.17 since we deduce
∆′ `T t = u and obtain ∆ `T t = u by the Strengthening Theorem 3.4.
For freshness, the result follows from Lemmas 3.17 and 2.5.

The transformation of `T tσ = uσ (` a#tσ) into ∆′ `T (tσ)−1 =

(uσ)−1 (∆′ ` a#(tσ)−1) is inductive on Π.
If the derivation ends with an instance of (#ab), (#a), (#b) then the

result follows by an instance of the same rule, possibly by using the
inductive hypothesis.

The case for (#X) is impossible by assumption. Let us work on the
interesting with more attention. Suppose Π ends with (# f). There are
three cases to consider:

1. The case of ` a# f (g1, . . . , gn) for f ∈ Σ: by assumption, ` a#gi
for 1 ≤ i ≤ n, and we get ∆′ ` a#g−1

i by induction hypothesis.
Now we can build a derivation of ∆′ ` a#(g−1

1 , . . . , g−1
n) using

(# f).

2. The case of ` a#dX() for dX ∈ D and X /∈ X : it follows from the
axiom rule (#ab) that ` a#c is always derivable.

3. The case of a#dX(aX′i1
, . . . , aX′ik

) for dX ∈ D and X ∈ X : we must
show ∆′ ` a#π · X, where

π = (a′Xi1
bXi1) · · · (a′Xik

bXik)(bXi1 aXi1) · · · (bXik aXik).

By (#X), this follows form ∆′ ` π−1(a)#X. Since a 6= a′Xil
and

also a 6= bXil for all l, we have

π−1(a) = (bXik aXik) · · · (bXi1 aXi1)(a)

We proceed by a case distinction on a:

– If a is in fact aXil for some l, then π−1(a) = bXil , and the
result follows since bXil #Xi ∈ ∆′ by construction.

– If a is none of the aXil for all l, then π−1(a) = a. By con-
struction a#X ∈ ∆ since aXil are the only atoms in A for
which aXil #Xi /∈ ∆. The result follows.

If the derivation Π of `T tσ = uσ ends with an instance of (refl),
(symm), (tran) or (cong[]) the result trivially follows by an instance of
the same rule by possible using the inductive hypothesis. Again we
work on the more interesting cases:

[June 16, 2021 at 14:22 – v1.2.1]

50 nominal universal algebra

Suppose the derivation ends with (perm): by the inductive hypothe-
sis we have ∆′ ` a#g−1 and ∆′ ` b#g−1. Then

∆′ `T (a b) · g−1 = g−1

using (perm). Using Lemma 3.16, we conclude

∆′ `T ((a b) · g)−1 = g−1.

The result now follows from Corollary 3.3.
Suppose the derivation ends with (ax∇`v=w). Then ` ∇πτ and
`T vπτ = wπτ for some permutation π and substitution τ such
that ∇τ, vτ and wτ do not mention any unknown. We must show
∆′ `T (vπτ)−1 = (wπτ)−1. Define the substitution τ′ such that Xτ′ =

(Xτ)−1 when Xτ 6= X and Xτ′ = X when Xτ = X. It follows that
(vπτ)−1 ≡ vπτ′, (wπτ)−1 ≡ wπτ′ and (∇πτ)−1 = ∇πτ′, so it suffices
to show

∇′ `T vπτ′ = wπτ′.

By (ax∇`v=w), this follows from ∆′ ` ∇πτ′, i.e., ∆′ ` (∇πτ)−1, which
follows from the inductive hypothesis using the assumption ` ∇πτ.

Putting the pieces together we finally show the main result of this
subsection: semantic equality, ∆ |=T t = u, implies syntactic equality,
∆ `T t = u.

Proof of Theorem 3.10. Suppose ∆ |=T t = u, so J∆ ` t = uKF(T,D)
ς for

the initial ground algebra F(T,D) and the valuation ς defined as
above. Now J∆Kς is valid by Lemma 3.15, so JtKς = JuKς. By Lemma
3.14 we have [tσ]T = JtKς and [uσ]T = JuKς. Therefore, by construction
`T tσ = uσ without using (congd). It follows by Lemma 3.18 that
∆ `T t = u.

Now that we have finally proved Theorem 3.10 let us think about
completeness for a moment. Recall that in Example 3.5 we showed
|=ATOM a #sem a but not ` a#a, as an example for incompleteness of
nominal algebra with respect to freshness derivations.

Looking at Definition 3.10 the reader may ask: ‘atoms in nominal
syntax are identified by its name, so why allow for the interpretation
of atoms to interpret two distinct atoms as equal elements in the
domain?’

Indeed, this seams to be the source of freshness incompleteness.
But, if one add the condition saying atom : A → A is an injection
one would have the property that JaKς 6= JbKς for all atoms a, b ∈ A.
But this condition would invalidate the soundness of the equality
fragment. To see this consider the theory ATOM. So `ATOM a = b is
trivially derivable, but any model of ATOM satisfies JaKς 6= JbKς. The
next subsection shows how to regain freshness completeness without
loosing soundness: semantic freshness is hidden inside the equality
fragment.

[June 16, 2021 at 14:22 – v1.2.1]

3.4 homomorphisms , subalgebras and product algebras 51

3.3.4 Completeness for Freshness

Definition 3.20. Let ∆ ` a#t be a freshness judgement. By the Choose-
a-Fresh-Name-Principle make a fixed but arbitrary choice of fresh
atom b such that b does not occurs in ∆, a, t. Write ∆+ for the context
∆, b#X1, . . . , b#Xn where {X1, . . . , Xn} = var(t) and

∆+ ` (a b) · t = t

for the equality judgement obtained from ∆ ` a#t as outlined above.

Theorem 3.11 (Completeness for Freshness). ∆ |=T a#t if, and only if,
∆+ `T (a b) · t = t.

Proof. Choose a model A of T and any valuation ς such that b #sem
ς(X1), . . . , b #sem ς(Xn). By a standard induction on the structure of t
one can show that b #sem JtKς. Lemma 3.3 says that a #sem JtKς if, and
only if, (a b) · JtKς = JtKς and from equivariance of the interpretation,
Lemma 3.8, the last part is equivalent to J(a b) · tKς = JtKς.

Now suppose ∆ |=T a#t. By Definition 3.13, a #sem JtKς for any
model of T and all ς such that J∆Kς is valid. By the arguments above
J(a b) · tKς = JtKς if b #sem ς(X1), . . . , b #sem ς(Xn). It follows from
Equality Completeness, Theorem 3.10, that ∆+ ` (a b) · t = t.

3.4 homomorphisms , subalgebras and product algebras

We now concentrates our study in the interaction between nominal
algebras. The first mathematical object that the reader may think of
is perhaps the notion of homomorphism between algebras. Indeed they
can carry a lot of information from one algebra to another, since they
preserve interpretation.

3.4.1 Homomorphisms and Homomorphic Images.

Definition 3.21. For Σ-algebras A and B, a Σ-algebra Homomorphism
from A to B is a equivariant function θ : A→ B such that

– θaA = aB ,

– θabsA(a, x) = absB(a, θx),

– θ fA(x1, . . . , xn) = f B(θx1, . . . , θxn), for every f ∈ Σ.

Suppose A and B are Σ-algebras. Call B a homomorphic image of A
if there is a surjective Homomorphism from A to B.

The next lemma states that if a homomorphism preserves valuations
then it also preserves interpretation. We use it as a tool to prove a
more important result, Lemma 3.20.

Lemma 3.19. Let θ : A → B be a homomorphism. Suppose ς is a
valuation to A and ς′ is a valuation to B. Also, suppose that θ(ς(X)) =

θ(ς′(X)), for all unknowns X. Then θ(JtKAς) = θ(JtKBς).

[June 16, 2021 at 14:22 – v1.2.1]

52 nominal universal algebra

Proof. We reason by induction on the structure of t. The base case is
trivial. We work on two interesting cases:

Suppose t ≡ π · X,

θ(Jπ · XKAς) ≡ θ(π · ς(X))

≡ π · ς′(X)

≡ θ(Jπ · XKBς′).

Suppose t ≡ [a] t,

θ(J[a] tKAς) ≡ θ(absA(a, JtKAς))

≡ absB(a, θ(JtKAς))
I.H≡ absB(a, θ(JtKBς′))

≡ θ(J[a] tKBς)

Lemma 3.20. Suppose A and B are Σ-algebras and that B is a homo-
morphic image of A. If A is a model of T, then so is B.

Proof. Fix some surjective homomorphism θ : A → B, choose any
axiom (∇ ` t = u) ∈ Ax, and a valuation ς to B. It suffices to show
that J∇ ` t = uKBς is valid. Suppose J∇KBς is valid, by definition this
means that a #sem ς(X) for every a#X ∈ ∇.

For each unknown X define the set X = {x ∈ A | θ(x) = ς(X)} ⊆
A, by equivariance of θ we get π · X = {x ∈ A | θ(x) = π · ς(X)}.
Therefore if π · ς(X) = ς(X) then π · X = X and it follows that
supp(X) ⊆ supp(ς(X)). Define the valuation ς′ to A by setting
ς′(X) = x for some choice of x ∈ X such that a #sem x for every
a#x ∈ ∇, this choice exists by Lemma 3.5. This construction makes
J∇KAς′ valid, and so since A is a model of T we have JtKAς′ = JuKAς′ .
Applying θ to both sides of this equation we get, using Lemma 3.19,

JtKBς = JuKBς .

Therefore, J∇ ` t = uKς is valid in B, as required.

3.4.2 Subalgebras

Definition 3.22. For Σ-algebras A and B call A a subalgebra of B,
written as A ≤ B, if the following conditions are satisfied:

– A ⊆ B,

– aA = bB , for all atoms a ∈ A,

– absA(a, x) = absB(a, x), for all atoms a ∈ A and all x ∈ A.

– The interpretation of functions is preserved on A, that is, for all
f ∈ Σ, and all x1, . . . , xn ∈ A, fA(x1, . . . , xn) = f B(x1, . . . , xn).

[June 16, 2021 at 14:22 – v1.2.1]

3.4 homomorphisms , subalgebras and product algebras 53

What we are saying in this definition is that subalgebras are closed
under the interpretation of atoms, abstractions, and function interpre-
tation which it inherits from B.

Lemma 3.21. Let A,B be Σ-algebras. Suppose B is a model of T =

(Σ, Ax). If A ≤ B then A is a model of T.

Proof. Suppose (∇ ` t = u) ∈ Ax and suppose ς is a valuation to A
such that a #sem ς(X) for every a#X ∈ ∇. Since ς is also a valuation
to B which is a model of T, it follows that JtKAς = JuKAς . Therefore, A
satisfies all the axioms of T.

3.4.3 Product Algebras

Definition 3.23. Let (Ai)i∈I be a countable I-indexed family of Σ-
algebras. The product algebra P = Πi∈IAi is the Σ-algebra defined
as:

– the domain is the product nominal set P = Πi∈I Ai,

– aP = (aAi)i∈I ,

– absP (a, (xi)i∈I) = Πi∈Iabs
Ai(a, xi),

– For each term-former f : n, the component-wise interpretation
function

fP ((xi)
1, . . . , (xi)

n) = (f (x1
i , . . . , xn

i))i∈I

Using Definition 3.10, one can easily show that the product algebra
is indeed a nominal Σ-algebra.

Lemma 3.22. For any I-indexed family of Σ-algebras (Ai)i∈I , if Ai is a
model of T = (Σ, Ax) for every i ∈ I then so is the product algebra P .

Proof. Suppose that ς is a valuation to P , take an axiom (∇ ` t =

u) ∈ Ax, and suppose a #sem ς(X) for every a #sem X ∈ ∇.
For each i ∈ I we obtain a valuation ςi to the domain Ai of Ai by

projecting to the i-th component of ς(X). By Lemma 3.6 we have that
a #sem ςi(X) for every a#X ∈ ∇. Since for every i ∈ I each Σ-algebra
Ai is a model of T, we obtain, for every i ∈ I:

pi(JtKAi
ς) = pi(JuKAi

ς)

where pi is the i-th projection. It follows that

JtKPς = JtKPς .

[June 16, 2021 at 14:22 – v1.2.1]

54 nominal universal algebra

3.4.4 Atoms-abstraction

Fix a nominal set X. Suppose x ∈ X and a ∈ A.

Definition 3.24. We define the set atom-abstraction [a] x by

[a] x = {(b, (b a) · x) | b #sem x} ∪ {(a, x)}

Write [A] X for the P-set such that:

– The underlying set is [A] X = {[a] x | a ∈ A, x ∈ X},

– The permutation action is π · [a] x = [π(a)]π · x.

Lemma 3.23. If X be a nominal set, x ∈ X and a ∈ A, then supp([a] x) =
supp(x) \ {a}.

Proof. The proof can be found in [23, Corollary 5.2].

Now we define the abstracted Σ-algebra [A]A out of A.

Definition 3.25. Suppose that A is a Σ-algebra. Define [A]A by:

– The domain set is the nominal set [A] A,

– a[A]A = [c] aA, for any c 6= a.

– abs[A]A(a, [c] x) = [c] absA(a, x), for any c 6= a.

– f [A]A([c] x1, . . . , [c] xn) = [c] fA(x1, . . . , xn).

Lemma 3.24. [A]A is a nominal Σ-algebra.

Proof. The proof can be found in [19, Lemma 8.15]

Lemma 3.25. If y1, . . . , yn ∈ [A] X then for any c ∈ A such that
c #sem y1, . . . , c #sem yn there exists x1, . . . , xn ∈ X such that yi = [c] xi
for 1 ≤ i ≤ n.

Proof. Since yi ∈ [A] X, it is of the form yi = [d] xi, for some d ∈ A

and xi ∈ X. Also, by Definition 3.24;

yi = {(b, (b d) · xi) | b #sem xi} ∪ {(d, xi)}

from c #sem yi it follows, using Lemma 3.23, that c /∈ supp(yi) =

supp(xi) \ {d} so c #sem xi then the pair (c, (c d) · xi) ∈ yi and we can
take yi = [c] xi, as required.

Lemma 3.26. If [a] x = [c] y then x = y.

Proof. From [c] x = [c] y and using Definition 3.24 we have that for
every atom b such that b #sem x: (b, (b c) · x) = (b, (b c) · y), so (b c) ·
x = (b c) · y and finally x = y.

Definition 3.26. If A is a Σ-algebra and ς is a valuation to A, then
write [c] ς for the valuation to [A] A such that X maps to [c] ς(X).

[June 16, 2021 at 14:22 – v1.2.1]

3.5 varieties and equational classes of algebras 55

Lemma 3.27. Suppose that A is a Σ-algebra and ς a valuation to A. If
c /∈ atms(t) then

JtK[A]A
[c]ς = [c] JtKAς

Proof. By a standard induction on t.

Corollary 3.4. Suppose that c /∈ atms(t, u). Then JtKAς = JuKAς if, and

only if, JtK[A]A
[c]ς = JuK[A]A

[c]ς .

Proof. If JtKAς = JuKAς then [c] JtKAς = [c] JuKAς and the result follows
from Lemma 3.27.

Conversely, suppose JtK[A]A
[c]ς = JuK[A]A

[c]ς . By Lemma 3.27 [c] JtKAς =

[c] JuKAς . The result now follows by Lemma 3.26.

Now we can prove the main result of this subsection.

Lemma 3.28. If A is a model of T then so is [A]A.

Proof. Suppose (∇ ` t = u) ∈ Ax. Take ς a valuation to [A] A such
that a #sem ς(X) for every a#X ∈ ∇. Now choose some fresh atom c
such that c /∈ atms(∇, t, u) and such that c #sem ς(X) for every X in
var(∇, t, u). By using Lemma 3.25, construct a valuation ς′ to A such
that ς(X) = ([c] ς′)(X) for every X in var(∇, t, u), and therefore such
that

JtK[A]A
ς = JtK[A]A

[c]ς′ and JuK[A]A
ς = JtK[A]A

[c]ς′ .

By Lemma 3.27,

JtK[A]A
[c]ς′ = [c] JtKAς′ and JuK[A]A

[c]ς′ = [c] JuKAς′ .

By Lemma 3.23 a #sem ς′(X) for every a#X ∈ ∇. Finally, since A is a
model of T we have JtKAς′ = JuKAς′ and therefore [c] JtKAς′ = [c] JuKAς′ . The
result follows.

3.5 varieties and equational classes of algebras

Definition 3.27. A (nominal algebra) variety V for a signature Σ
is a collection of Σ-algebras ∈-closed under homomorphic image,
subalgebra, countable product, and atoms-abstraction.

Definition 3.28. The collection V of Σ-algebras is called (nominal
algebra) equational if there is a theory T = (Σ, Ax) such that V is the
collection of all models of T.

We now are able to state the main result of this chapter: a version of
the HSP theorem for nominal algebras.

Theorem 3.12 (Nominal HSP Theorem). A collection of Σ-algebras V
is equational if, and only if, it is a variety.

The proof of the HSP Theorem takes the rest of this section. Fix a
theory T = (Σ, Ax) and a collection V of Σ-algebras2.

2 For now we do not assume V is a variety.

[June 16, 2021 at 14:22 – v1.2.1]

56 nominal universal algebra

3.5.1 Surjections Out of Initial Algebras

Finally, we give to F(T,D) its initiallity we talked about earlier. We
first show that every Σ-algebra A is the homomorphic image of some
sufficient large initial algebra.

Lemma 3.29. SupposeA is a model of T = (Σ, Ax). Then the following
determine a Σ-algebra homomorphism from F(T,D) to A: for each
term-former D

– a choice of n atoms a1, . . . , an, and

– a choice of element θd(a1, . . . , an) ∈ A such that supp(θd(a1, . . . , an)) ⊆
{a1, . . . , an}.

Proof. Define the relation θ ⊆ F(Σ,D)× A by:

– θd(π(a1), . . . , π(an)) = π · θd(a1, . . . , an).

– θa = aA.

– θ[a] g = absA(a, θ[g]T).

– θ f (g1, . . . , gn) = fA(θg1, . . . , θgn).

We first need to show that θ is a well defined function θ : F(T,D)→ A.
That is, [g]T = [h]T implies θg = θh. Indeed, let Π be a ground
derivation of `T g = h. Consider the construction of the inverse
mapping, Definition 3.19, and take σ a substitution as in Definition
3.17. Let ς(X) = θ(Xσ). We claim that θg =

r
g−1

z

ς
and θh =

r
h−1

z

ς
.

Proof of the Claim. We prove it by induction on g. The atomic case is
trivial. We work on one inductive step: Suppose g ≡ [a] g′. So

θ[a] g′ = absA(a, θ[g′]T)
r
([a] g′)−1

z

ς
=

r
[a] (g′)−1

z

ς

= absA(a,
r
(g′)−1

z

ς
)

= absA(a, θg′)

Now θ can be viewed as a function θ : F(T,D)→ A. Also, one can
show π · θg = θ(π · g) by induction on g. It follows that;

– π · (θ[g]T) = π · θg = θπ · g = θ[g]T.

– θaF(T,D) = aA.

– θ f F(T,D)([g1]T, . . . , [gn]T) = fA(θ[g1]T, . . . , [gn]T).

So θ is a Σ-algebra homomophism from the initial ground algebra
F(T,D) to A. So by Lemma 3.18, ∆ `T g−1 = h−1. Therefore, the
result follows by Soundness, Theorem 3.8.

Theorem 3.13. If A ∈ V then there exists some (sufficiently large) set
of fresh term-formers D such that there exists a surjective Σ-algebra
homomophism θ : F(T,D)→ A.

[June 16, 2021 at 14:22 – v1.2.1]

3.5 varieties and equational classes of algebras 57

Proof. As usual, we write |A| for the cardinality of A. Suppose that
D is a set of term-formers with cardinality at least |A| for every arity
n > 0, and with no term-formers with cardinality 0. We shall exhibit a
suitable θ from F(T,D) to A.

For each permutation equivalence class {π · x | π ∈ P} ⊆ A choose
a representative x ∈ A. And for each such x,

– order the support of x as a1, . . . , an, pick a unique n-ary term-
former d ∈ D, and

– assign θd(a1, . . . , an) = x.

For each remaining unassigned d(b1, . . . , bn) assign θd(b1, . . . , bn) to
bA1 . By Lemma 3.29, this choice extends to a homomophism θ from
F(T,D) to A.

To see that θ is a surjection consider any x′ ∈ A. By construction
there exists some representative x such that x′ ∈ {π · x | π ∈ P}.
So write x′ = π · x. Hence, x = θd(a1, . . . , an) and so x′ = x =

θd(a1, . . . , an).

3.5.2 Injections Out of Initial Algebras

Fix a countable collection V of Σ-algebras. We now show that there
exists a homomophism from the initial algebra F(T,D) to the product
Πi∈IBi.

Definition 3.29. Let A (Bi∈I) be a Σ-algebra (I-indexed family of Σ-
algebras) such thatA (Bi) are all models of T, for i ∈ I. Let θi : A → Bi
be a I-indexed family of homomophisms. Then write θ = Πi∈Iθi for the
natural map from A to Πi∈IBi, mapping x ∈ A to (θix)i∈I ∈ Πi∈I Bi.

It is easy to verify that θ defined in Definition 3.29 is a Σ-algebra
homomophism.

Definition 3.30. Let T = (Σ, Ax) where Ax is the collection of jud-
ments valid in all B ∈ V for all valuations. Call T the theory generated
by V .

Remark 3.3. In the definition above we are saying that (∇ ` t = u) ∈
Ax exactly when for every B ∈ V and every possible valuation ς to B,
it is the case that if a #sem ς(X) for every a#X ∈ ∇ then JtKBς = JuKBς .

Theorem 3.14. Let V be a family of Σ-algebras and T be the theory
generated by V . Suppose D is any set of fresh term-formers (so D ∩
Σ = ∅).

Then there exists a countable I-indexed set of Σ-algebras Bi ∈ V ,
for i ∈ I, such that there exists a injective Σ-algebra homomophism
θ : F(T,D)→ P = Πi∈I Bi.

Proof. Let I be the set of pairs (g, h) of ground terms in the signature
Σ∪D such that [g]T 6= [h]T. Note that I is a countable set since F(Σ,D)
is countable. Fix some arbitrary but fixed i = (g, h) ∈ I. We assumed
that 0T g = h, so by Corollary 3.3 ∆ 0T t = u, where t = g−1σ and

[June 16, 2021 at 14:22 – v1.2.1]

58 nominal universal algebra

u = h−1σ, as in Lemma 3.18. By our assumption that T is generated
by V , there exists some model Bi in V and valuation ς such that J∆KBi

ς

is valid whereas JtKς 6= JuKς. Define the set

{c1, . . . , cp} :=

(⋃
X∈X

supp(ςX)

)
\ A

where A and X are as in Definition 3.16. Write B′i for [A]Bi and
write ς′ for [c1] . . . [cp]ς (see Definition 3.26). Since V is closed under
atoms-abstraction we have Bi ∈ V . By Corollary 3.4

JtKB
′
i

ς′ 6= JuKB
′
i

ς′

We construct a choice θ by setting θd(a1, . . . , an) = ς′(X) for each
d ∈ D, where X ∈ X is the unknown corresponding to d, and
a1, . . . , an is the choice of atoms in order corresponding to d, in the
sense of Definition 3.16 and Def. 3.17.

In order to use Lemma 3.29 to obtain a homomophism θ from
F(T,D) to B′i we must verify that supp(ς′(X)) ⊆ {a1, . . . , an}. This is
done as follows:

Suppose that a /∈ {a1, . . . , an}. By the rules in Figure 2.1 ` a#d(a1, . . . , an).

By Lemma 3.18, ∆ ` a#d(a1, . . . , an)
−1. By assumption J∆KB

′
i

ς′ so by

Soundness (Theorem 3.8) a #sem Jd(a1, . . . , an)K
B′i
ς′ . By using Definition

3.19 we can see that d(a1, . . . , an)
−1 = X and with that we deduce that

a #sem ς′(X). So it follows that supp(ς′(X)) ⊆ {a1, . . . , an}, as required.
It follows by the choice of Bi that θ := Πi∈Iθi, as in Definition 3.29,

from F(T,D) to P = Πi∈IB′i is an injective Σ-algebra homomophism.

The next Lemma is the last piece of the puzzle, it says that the initial
algebra F(T,D) is always inside a variety in which T is the theory
generated by it.

Lemma 3.30. Suppose V is a variety and suppose T is the theory
generated by V . Then F(T,D) ∈ V for every set of term-formers D.

Proof. By Theorem 3.14 there is some I-indexed family of Σ-algebras
and a injective homomophism θ : F(T,D)→ P = Πi∈IBi. Since V is
closed under products, P ∈ V . The homomorphic image of F(T,D)
is a subalgebra of P , and since V is closed under subalgebras and
homomorphic images the result follows.

3.5.3 The Nominal HSP Theorem

Finally, we give a proof for the Nominal HSP Theorem using most of
the results proved so far.

Proof of the Nominal HSP Theorem. Suppose V is equational. So, by Lemma
3.22 V is closed under products. Lemma 3.20 says V is closed under
homomorphic images, by Lemma 3.21 V is closed under subalgebras,

[June 16, 2021 at 14:22 – v1.2.1]

3.5 varieties and equational classes of algebras 59

and from Lemma 3.28 we know V is closed under atom-abstraction.
Therefore, V is a variety.

Conversely, suppose V is a variety. Let T be the theory generated
by V . Let B be any model of T. By Theorem 3.13 there exits some D
such that B is the homomorphic image of F(T,D). By Lemma 3.30

F(T,D) ∈ V . Since V is closed under homomophisms, B ∈ V as
required. Therefore V is equational.

We also consider the term-algebra T (Σ, A, X), as in the first-order
case, this term-algebra is generic (see [9]) for solving existentially closed
equations.

Corollary 3.5. Let φ be the existentially closed equational judgement:

φ ::= ∃~X(∆ ` s =T t).

Then ∆ `F(T,D) φ if, and only if, ∆ `T (Σ,A,X) φ.

Example 3.6. Corollary 3.5 does not hold for disequations, to see this
consider the theory T = (Σ, Ax) where Σ = { f (_)} and Ax = {`
f (X) = a,` [a] f (X) = a}. In T (Σ, A, X) one can derive ` f (b) = a
and ` f (b) = b:

(ax∆′` f (X)=a)
` id · f (X)σ = aσ

` f (b) = a
(symm)

` a = f (b)

(ax∆′` f (X)=a)
` (a b) · f (X)σ′ = (a b) · aσ′

` f (b) = b
(trans)` a = b

by taking σ = {X/b} in the left branch and σ′ = {X/a} in the
right branch. The dashed lines in the derivation above represent the
result obtained after the application of substitutions σ and σ′, and the
swapping of names in the axiom ` f (X) = a. Therefore, every atom is
in the same equivalence class modulo T.

Also, from the axioms of T one can derive ` f (t) = a and `
[b] f (u) = a for any pair of terms t and u. Hence it is possible to
derive ` t′ = u′ for any non-variable terms t′ and u′. The other
equivalence classes are for variables X, Y, Z

It follows that `T (Σ,A,X) ∃X.X 6= a. However, F(T,D) (with D = ∅)
has only one equivalence class, i.e., the class of all ground terms and
atoms, therefore, 0F(T,D) ∃X.X 6= a since every ground term and atom
are in the same equivalence class modulo T.

[June 16, 2021 at 14:22 – v1.2.1]

[June 16, 2021 at 14:22 – v1.2.1]

4
N O M I N A L D I S U N I F I C AT I O N C O N S T R A I N T S

In this chapter, we follow the approach proposed by Buntine and
Bürckert [9] for solving a system of equations and disequations. Our
approach, as in the first-order case, depends on the unification type
of a (nominal) theory T. Fix the nominal algebra T (Σ, A, X) with the
empty set of axioms, that is, terms are considered up to the built-in
α-equivalence. The results in this section can be extended to any theory
T provided unification is decidable and finitary for this theory; pure
α-equivalence has been chosen to make examples and proofs easier to
follow.

In chapter 3 we study nominal universal algebra and define precisely
what we mean by a nominal equational theory.

Definition 4.1. A (nominal disunification) constraint problem P is an
ordered pair P = 〈E || D〉 where E is a nonempty set of nominal
equations-in-context ∆ ` s ≈α t and D is a (possible empty) set of
nominal disequations-in-context ∇ ` p 6≈α q, as follows:

E = {∆1 ` s1 ≈α
? t1, · · · , ∆n ` sn ≈α

? tn}
D = {∇1 ` p1 6≈α

? q1, · · · ,∇m ` pm 6≈α
? qm}

The sets ∆1, . . . , ∆n,∇1, . . . ,∇m are consistent contexts. We call them
the initial freshness conditions that are imposed on equations (disequa-
tions) in the problem P .

In the case any of the ∆i or ∇j of a problem is empty we may write
an equation(disequation)-in-context just as si ≈α

? ti (pj 6≈α
? qj) instead

of ∅ ` s ≈α
? t. We also may consider the equations and disequations

of the problems under the same context, ∆ := ∪∆i and ∇ := ∪∇j.

Remark 4.1. A constraint problem is equivalent to an existentially
closed formula:

P := ∃~X
((∧

∆i ` si ≈α ti

)
∧
(∧
∇j ` pj 6≈α qj

))
.

We solve these formulas in the nominal term-algebra T (Σ, A, X) (see
[19, 22]), this is the logical task of finding witnesses/solutions for
the variables in P , that is, a pair 〈Γ, σ〉 where σ is a substitution for
the variables of the formula such that under some (possible empty)
consistent context Γ we have Γ ` Pσ.

To give some intuition on the construction of solution pairs, consider
the constraint problem below:

P =
〈
(b a) · X ≈α

? Y || [a] X 6≈α
? [b]Y

〉
(4.1)

The intended effect of a solution 〈Γ, σ〉 of P is that it needs to solve
the equation (b a) · X ≈α

? Y and the disequation [a] X 6≈α
? [b]Y where

61

[June 16, 2021 at 14:22 – v1.2.1]

62 nominal disunification constraints

solving this disequation means Γ 0 [a] Xσ ≈α [b]Yσ, i.e., 〈Γ, σ〉 is not
a solution of the equation [a] X ≈α

? [b]Y which will be called the
associated equation to the problem [a] X 6≈α

? [b]Y. Notice that,

〈Γ, σ〉 = 〈∅, [Y/(b a) · X]〉 (4.2)

solves the constraint problem P above. The main goal of this section
is show how to construct these solutions.

In general, instantiation plays an important role in unification the-
ory. It is by instances of more general unifiers (instantiation closure)
that one produces a finite representation of all other solutions of a
unification problem. Therefore, it is helpful to have the property of
instantiation closure to solutions of constraints problems as well. Un-
fortunately, this is not the case since we are solving constraints in
the nominal term-algebra T (Σ, A, X). For an example, let Q be the
constraint problem:

Q =
〈

X ≈α
? Y || X 6≈α

? a
〉

The pair 〈Γ, σ〉 = 〈∅, [X 7→ (a b) · Z, Y 7→ (a b) · Z]〉 solves Q. How-
ever, if we instantiate this solution with δ = [Z 7→ b] the instance
〈∅, [X/a, Y/a]〉 is not a solution of Q.

Example 4.1. Let 〈Γ, σ〉 = 〈∅, [Y/(b a) · X]〉, as in (4.2). Consider the
pair

〈Γ′, σ〉 = 〈b#X, [Y/(b a) · X]〉.

Notice that 〈Γ, σ〉 ≤ 〈Γ′, σ〉, therefore 〈Γ′, σ〉 solves (b a) · X ≈α
? Y. In

addition, 〈Γ′, σ〉 is a solution of the equation [a] X ≈α
? [b]Y associated

to [a] X 6≈α
? [b]Y. It can not solve (4.1) since it solves the equations

and the associated equation [a] X ≈α
? [b]Y.

The reader may wonder if such an anomaly is caused by the context
assumptions added on the initial problem or, reasonably enough,
even by the α-equivalence embedded in the theory of nominal terms.
Certainly, context assumptions seem to cause some difficulties. Firstly,
because that the notion of instantiation may introduce new freshness
constraints, as in Example 4.1. Secondly, freshness conditions on the
equational part of a constraint problem can interact with solutions
and, as showed in the example below, even change the solvability of a
problem.

Example 4.2. Consider the following modification of the original
problem (4.1):

P ′ =
〈

b#X ` (b a) · X ≈α
? Y || [a] X 6≈α

? [b]Y
〉

Notice that P ′ does not have a solution: every time we solve b#X `
(b a) · X ≈α

? Y we always solve the equation [a] X ≈α
? [b]Y associated

to [a] X 6≈α
? [b]Y.

[June 16, 2021 at 14:22 – v1.2.1]

4.1 generalized instantiation 63

We will work on this type of issues in the remaining of the disserta-
tion. First, we define precisely what we mean by a solution of nominal
constraint problems. Keep in mind that our goal is the development
of a nominal generalization for the already established notion of in-
stantiation of solutions (Definition 2.17), but this needs to be done in
such a way that instantiation closure still holds.

4.1 generalized instantiation

In this section, some notions initially established in [9] will be ex-
tended into the nominal framework. The main difference is the lifting
of the notion of substitution with exceptions to pairs of the form 〈Γ, σ〉
consisting of a consistent freshness context and a substitution, in
addition of course, to the fact that α-equality is axiomatized in nomi-
nal terms which adds some complexity when compared to syntactic
equality. Besides, we have adapted the Consistency Test Algorithm
(Algorithm 1) to deal with pairs with exceptions.

Definition 4.2. A pair with exceptions, denoted as 〈Γ, σ〉 −Ψ, consists
of a pair 〈Γ, σ〉 and an I-indexed family of the form Ψ = {〈∇l , ψl〉 |
l ∈ I}.

Pairs with exceptions will be used as a representation of solutions
of a constraint problem that has restrictions on how they can be
instantiated. For instance, in the problem Q above, solutions of the
equation X ≈α Y can be instantiated in any way except for the instances
where X is mapped to a.

Definition 4.3 (Pair instances).

– A pair 〈Γ, σ〉 is said to be an instance of a family Ψ = {〈∇l , ψl〉 |
l ∈ I}, denoted by Ψ ≤ 〈Γ, σ〉, if and only if each instance of
〈Γ, σ〉 is an instance of some 〈∇l , ψl〉 in Ψ.

– A pair 〈∆, λ〉 is an instance of a pair with exceptions 〈Γ, σ〉 − Ψ,
written 〈Γ, σ〉 −Ψ ≤ 〈∆, λ〉, if and only if 〈∆, λ〉 is an instance of
〈Γ, σ〉 but not of Ψ.

Definition 4.4. A pair with exceptions 〈Γ, σ〉 −Ψ is consistent if and
only if it has at least one instance.

For example, the pair with exceptions 〈b#X, [Y/(b a) ·X]〉−{(b#X, [Y/(b a) ·
X])} from Example 4.2 is inconsistent. The following lemma is a useful
characterization of consistency for pair with exceptions.

Lemma 4.1 (Inconsistency Lemma). A pair with exceptions 〈Γ, σ〉 −Ψ
is inconsistent if and only if 〈Γ, σ〉 is an instance of Ψ.

Proof.

(⇒) If 〈Γ, σ〉 is an instance of Ψ then all instances 〈∆, γ〉 ≤ 〈Γ, σ〉 is
an instance of some 〈∇i, ψi〉 in Ψ, so by Definition 4.3 〈Γ, σ〉 −Ψ
has no instances hence it is inconsistent.

[June 16, 2021 at 14:22 – v1.2.1]

64 nominal disunification constraints

(⇐) Conversely, suppose 〈Γ, σ〉 − Ψ is consistent and 〈Γ, σ〉 is an
instance of Ψ. Then there exists an instance 〈∆, λ〉 of 〈Γ, σ〉 −Ψ.
Hence 〈Γ, σ〉 ≤ 〈∆, λ〉. Since 〈Γ, σ〉 is an instance of Ψ we have
〈∇i, ψi〉 ≤ 〈Γ, σ〉, by transitivity

〈∇i, ψi〉 ≤ 〈Γ, σ〉 ≤ 〈∆, λ〉

a contradiction with Definition 4.3.

Recalling Definition 3.11, we say that a pair with exceptions 〈Γ, σ〉 −
ψ is inconsistent on a Σ-algebra A iff instances(〈Γ, σ〉 −Ψ) = ∅ in A,
where

instances(〈∇, ρ〉) = {〈∇, ρ〉ς | for all valuation ς}.

Corollary 4.1. If 〈Γ, σ〉 − ψ is inconsistent on T (Σ, A, X) then it is
inconsistent on the ground algebra F(CORE,D).

Proof. If 〈Γ, σ〉 − ψ is inconsistent on T (Σ, A, X) then each instance
〈Γ′, σ′〉 of 〈Γ, σ〉 is in turn an instance of some 〈∆l , ψl〉 ∈ Ψ, i.e., in
terms of Definition 2.17, there exists δ such that

for all X ∈ X, Γ′ `T (Σ,A,X) Xσ′ = Xψlδ and Γ′ ` ∆lδ.

The result follows from Corollary 3.5. Notice that the converse is not
true in general. For instance, consider the theory T as in Example 3.6,
all pair with exceptions are inconsistent on F(T,D) since it has only
one equivalence class but this not happens in T (Σ, A, X).

Corollary 4.2. Let 〈Γ, σ〉 −Ψ be a pair with exceptions. If there is some
〈∇l , ψl〉 ∈ Ψ such that there exists a substitution δ satisfying

Γ ` Xσ ≈α Xψlδ, for all X ∈ vars(P).

Then 〈Γ, σ〉 −Ψ is inconsistent if and only if Γ ⊇ 〈∇lδ〉nf.

Proof. Consider the pair with exceptions 〈Γ, σ〉 − Ψ as above. From
assumption, σ is an instance of ψl over the context Γ. By the incon-
sistency lemma this pair with exceptions is inconsistent iff 〈Γ, σ〉 is
an instance of Ψ. The result follows from the fact that Γ ` ∇lδ iff
Γ ⊇ 〈∇lδ〉nf.

The above corollary enables us to algorithmically test if some pair
with exceptions is consistent provided that we have already solved
the matching-in-context problem (Γ ` Xσ) ≈? (Γ ` Xψ) (for all
variables X appearing in the constraint problem) where Xσ is the
pattern (see [18, Definition 45]). That is, for each ψl we solve the
unification problem

Γ ` X1σ ≈α
? X1ψl , · · · , Xnσ ≈α

? Xnψl

without instantiating variables of Xiσ, for all 1 ≤ i ≤ n. The solution
of this matching problem (if it exists) will be denoted by δ. In [11], the
authors give an efficient implementation for the matching problem.

[June 16, 2021 at 14:22 – v1.2.1]

4.2 solving nominal constraints 65

input : 〈Γ, σ〉 − ψ a finite pair with exceptions
output : true if the input is consistent false otherwise

1 foreach 〈∇l , ψl〉 ∈ Ψ do
2 if matching(Γ, X1σ ≈? X1ψl , · · · , Xnσ ≈? Xnψl) = δ then
3 if Γ ⊇ 〈(∇lδ)〉nf then
4 return false and stop
5 end
6 end
7 end
8 return true

Algorithm 1: Consistency Test

4.2 solving nominal constraints

Finally, we give the formal definition of a solution of a nominal con-
straint problem and also construct a finite representation for the solu-
tion set.

Definition 4.5. Let P =
〈

∆ ` s1 ≈α
? t1, · · · , sn ≈α

? tn || ∇ ` p1 6≈α
? q1, · · · , pm 6≈α

? qm

〉
be a nominal disunification constraint problem. A solution of P is a
pair 〈Γ, σ〉 of a consistent context Γ and a substitution σ satisfying the
following conditions:

1. 〈Γ, σ〉 is a solution of the equational part E of P .

2. 〈Γ, σ〉 satisfies the disequations in the disequational part D of P ,
that is:

a) Γ 0 ∇σ, or

b) Γ 0 pσ ≈α qσ, for all p 6≈α
? q in D.

input : A disunification problem P = 〈E || D〉.
output : A finite set S of pairs with exceptions (can be the empty set).

1 let 〈Γ, σ〉 := unify(E) ;
2 let Ψ :=

⋃
pi 6≈α

?qi∈D

{〈∇i, ψi〉 = unify(∇i, pi ≈α
? qi)}

3 if consistent(〈Γ, σ〉 −Ψ) then
4 return 〈Γ, σ〉 −Ψ
5 else
6 return ∅
7 end

Algorithm 2: Disunification Algorithm

Definition 4.6. We call a set S of pairs with exceptions a complete
representation of the solutions of the constraint problem P iff S satisfies
the following conditions:

1. If 〈Γ, σ〉 −Ψ ≤ (∆, λ) for some 〈Γ, σ〉 −Ψ in S then 〈∆, λ〉 solves
P .

2. If 〈∆, λ〉 solves P then it is an instance of some 〈Γ, σ〉 −Ψ in S.

[June 16, 2021 at 14:22 – v1.2.1]

66 nominal disunification constraints

3. 〈Γ, σ〉 −Ψ is consistent for all 〈Γ, σ〉 −Ψ ∈ S.

Similar to nominal unification problems, we are interested in gen-
erating a complete finite representation for the set of solutions to a
constraint problem P . We use Algorithm 2 to compute such a repre-
sentation in the form of a pair with exceptions 〈Γ, σ〉 −Ψ where 〈Γ, σ〉
is a solution for the equations in P and the family Ψ = {〈∆l , ψl〉} is
formed by taking each pair 〈∆l , ψl〉 as the solution of the associated
equations ∆ ` pl ≈α

? ql , 1 ≤ l ≤ m. Termination of Algorithm 2

follows from the termination of unify, and correctness (soundness
and completeness) follows from the Representation Theorem below.

Theorem 4.1 (Representation Theorem). Let

P =
〈

∆ ` s1 ≈α
? t1, · · · , sn ≈α

? tn || ∇ ` p1 6≈α
? q1, · · · , pm 6≈α

? qm

〉
be a nominal constraint problem. Define the family

Ψ :=
⋃

p 6≈α
?q∈D

U
(
∇, p ≈α

? q
)

.

Then the set S = {〈Γ, σ〉 − Ψ | 〈Γ, σ〉 ∈ U (E) and Ψ 6≤ 〈Γ, σ〉} is a
complete representation of solutions for the constraint problem P .

Proof.

1. Take 〈Λ, λ〉 an instance of some 〈Γ, σ〉 − Ψ in S. Then 〈Γ, σ〉 ≤
〈Λ, λ〉 and it is not an instance of Ψ. Since unification prob-
lems are closed by instantiation it follows that 〈Λ, λ〉 solves the
equational part of P . It remains to show that 〈Λ, λ〉 solves the
disequational part of P . Suppose by contradiction that 〈Λ, λ〉
satisfies ∇ ` pl ≈α ql for some ∇ ` pl 6≈α ql in D. Therefore,
〈Λ, λ〉 is an instance of 〈∇l , ψl〉 (a solution of the associated
unification problem ∇ ` pl ≈α

? ql in D) and every instance of
〈Λ, λ〉 is an instance of 〈∇l , ψl〉 then Ψ ≤ 〈Λ, λ〉, a contradiction.

2. Suppose 〈Λ, λ〉 solves P . Then, 〈Λ, λ〉 solves the equational
(disequational) part of P . Consider 〈Γ, σ〉 ∈ U (E) a solution
of E, then we conclude that 〈Γ, σ〉 ≤ 〈Λ, λ〉. In addition, 〈Λ, λ〉
solves the disequational part of P as well, that is;

Λ 0 ∇λ or Λ 0 pλ ≈α qλ, for all p 6≈α
? q ∈ D (4.3)

Assume 〈Λ, λ〉 is an instance of Ψ. Then all instances of 〈Λ, λ〉 is
an instance of some 〈∇l , ψl〉 in Ψ. Hence, there is some 〈∇l , ψl〉
in Ψ such that

〈∇l , ψl〉 ≤ 〈Λ, λ〉,

a contradiction with (4.3). Therefore, 〈Λ, λ〉 cannot be an instance
of Ψ and, we conclude that 〈Λ, λ〉 is an instance of 〈Γ, σ〉 −Ψ, as
required.

Remark 4.2.

[June 16, 2021 at 14:22 – v1.2.1]

4.2 solving nominal constraints 67

1. Note that any ground instance of a pair with exception repre-
senting a solution of a constraint problem P is also a solution
of P . We can restrict solutions to ground instances, but this
does not mean that if a problem is solvable in the term-algebra
T (Σ, A, X) it is also solvable in the ground algebra F(CORE,D),
as discussed earlier in Example 3.6.

2. If one wants to solve a disunification problem in the initial
ground algebra, by Lemma 4.1, one needs to test if all ground
instances of the solutions to the equational part E are an instance
of the exceptions ψ. For some nominal theories this is not an
easy task.

3. We have a restricted instantiation closure, as it is not transitive.
In fact, 〈∅, [X/Z]〉 is an instance of the pair with exception
〈∅, [X/Y]〉 − 〈∅, [X/a]〉. Note that 〈∅, [X/Z]〉 ≤ 〈∅, [X/a]〉 but
the latter is not an instance of 〈∅, [X/Y]〉 − 〈∅, [X/a]〉.

Example 4.3. Consider the constraint problem P below:

P =
〈

λ[a] X ≈α
? λ[b]Y || X 6≈α

? Y, X 6≈α
? a
〉

.

First apply unif to the equational part of the problem obtaining as
result:

〈Γ, σ〉 = 〈b#X, [Y/(b a) · X]〉 (4.4)

Then solve the associated equations of the disequational part to com-
bine them as a family of pairs with exception:

Ψ = {〈∅, [X/Y]〉, 〈∅, [X/a]〉} (4.5)

Finally form the pair with exception 〈Γ, σ〉 − Ψ by the combination
of (4.4) and (4.5). We can check consistency of 〈Γ, σ〉 −Ψ using Algo-
rithm (1).

[June 16, 2021 at 14:22 – v1.2.1]

[June 16, 2021 at 14:22 – v1.2.1]

5
C O N C L U S I O N S A N D F U T U R E W O R K

In this work, we have developed a method to deal with nominal
equations constrained by equality constraints in the form of nominal
disequations. The approach adapts Buntine and Bürckert’s first-order
method to solve disequations taking into account the particularities of
nominal syntax and semantics. To the best of our knowledge, this is
the first work that deals with disequations in the nominal setting. The
main result, Theorem 4.1, establishes the soundness and completeness
of the proposed approach.

As future work, we intend to investigate more specific applications
of nominal constraint problems; inspired from Buntine and Bürck-
ert’s work we could seek some direct extensions to nominal logic
programming with negated equations and apply our results to more
general unification theories (for instance, AC and AC1-nominal unifi-
cation problems). Also, the more general approach to disunification
followed by Comon and Lescane [16] using quantified variables will
be investigated.

69

[June 16, 2021 at 14:22 – v1.2.1]

[June 16, 2021 at 14:22 – v1.2.1]

A
Z FA S E T T H E O RY A N D E Q U I VA R I A N C E

We use atoms in this dissertation — we introduce them when we say:
‘Fix a countable infinite set A of atoms’ in Chapter 2.

We can represent atoms as natural numbers 0, 1, 2, 3, . . . or as sets
∅, {∅}, . . . in principle we might use some properties of atoms specific
to their representation, such as a < b or a ∈ b. However, in this
dissertation we have not used none of these properties because we
consider atoms to be . . . atomic.

Here atomic has an specific meaning: atomic objects does not have
internal structure, in contrast with the examples given above. Set
theorists call these atomic objects urelemente. A consequence of this
construction is that atoms can be distinguished apart — a 6= b is always
true and a = b is always false. This give us the very important ability
to rename atoms. This is called equivariance property, it is an meta-
mathematical tool to reason about nominal structures such as nominal
algebra, λ-calculus (represented as in Chapter 1).

Definition A.1. For the language of ZFA set thoery, in addition to the
basic language of first-order logic with equality, we assume:

• A binary predicate symbol ∈ called set membership.

• A constant term-former A called the set of atoms.

(Sets) ∀x.((∃y.y ∈ x)→ x /∈ A)

(Extensionality) ∀x.(x /∈ A→ x = {z | z ∈ x})
(Comprehension) ∀x.∃y.(y /∈ A∧ y = {z ∈ x | φ}), if y is not free in φ

(∈-induction) ∀x.(∀y.(y ∈ x → φ[y/x])→ φ)→ ∀x.φ

(Replacement) ∀x.∃z.(z /∈ A∧ z = {F(y) | y ∈ x})
(Pairset) ∀x.∀y.∃z.(z = {x, y})
(Union) ∀x.∃z.(z /∈ A∧ z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)})

(Powerset) ∀x.∃z.(z = {y | y ⊆ x})
(Infinity) ∃x.(∅ ∈ x ∧ ∀y.(y ∈ x → y ∪ {y} ∈ x))

Figure A.1: Axioms of ZFA Set Theory

In the axioms of Fig. A.1, φ range over all predicates, φ[x/y] denotes
the predicate obtained by capture-avoiding substitution of x by y, and
F(y) represent any function which can be expressed in the language
of ZFA sets. We also use the following sugar:

71

[June 16, 2021 at 14:22 – v1.2.1]

72 zfa set theory and equivariance

x ={z | z ∈ x} is sugar for ∀y.(∀z.(z ∈ x ⇐⇒ z ∈ y)→ x = y)

y ={z ∈ x | φ} is sugar for ∀z.(z ∈ y ⇐⇒ (z ∈ x ∧ φ))

z ={F(y) | y ∈ x} is sugar for ∀u.(u ∈ z ⇐⇒ ∃y.(F(y) = u ∧ y ∈ x))

z ={x, y} is sugar for ∀u.(u ∈ z ⇐⇒ (x = u ∨ u = y))

z ={y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)} is sugar for ∀y.(y ∈ z ⇐⇒ ∃y′.(y ∈ y′ ∧ y′ ∈ x))

z ={y | y ⊆ x} is sugar for ∀y.(y ∈ z ⇐⇒ ∀y′.(y′ ∈ y→ y′ ∈ x))

∅ ∈x is sugar for ∃z.(z ∈ x ∧ ∀z′.z′ /∈ z)

y∪{z} ∈ x is a sugar for ∃u.(u ∈ x ∧ ∀u′.(u′ ∈ u ⇐⇒ u ∈ y ∨ u = z))

The syntatic sugar in set theory is very rich; in this description itself
we use some other sugars that may be ‘obvious’ for the reader.

Definition A.2. We define a permutation action on ZFA sets by:

π · a = π(a) π · X = {π · x | x ∈ X} (X /∈ A)

This definition is by ∈-induction, a standard method in set theory
which relies on a well-foundedness property implied by the axiom
(∈-Induction).

Recall that φ ranges over predicates of ZFA. Write φ(x1, x2, . . . , xn)

to range over predicates which mentions at most x1, x2, . . . , xn as free
variable symbols.

Theorem A.1 (ZFA Equivariance). If φ(x1, . . . , xn) is a predicate in
ZFA set theory then

φ(x1, . . . , xn) ⇐⇒ φ(π · x1, . . . , π · xn)

is always provable, for any permutation π.

Corollary A.1. We can interchange φ(x1, . . . , xn) and φ(π · x1, . . . , π ·
xn) in a proof and in validity on models.

The proofs and more results on ZFA can be found in [22, Appendix
A] and [23].

[June 16, 2021 at 14:22 – v1.2.1]

B
C O M P L E T E P R O O F S

This chapter concentrates complete proofs stated in the body of the
dissertation.

b.1 chapter 2

Lemma B.1. ≈α is reflexive, i.e., ∆ ` s ≈α s, for all s.

Proof. The proof is by induction on the syntax of s. The atomic case,
∆ ` a ≈α a, is always derivable.

If s ≡ π · X then since ds(π, π) = ∅ one trivially derive π · X ≈α

π · X using (Ds).
If s ≡ [a] t. Then by induction hypothesis, ∆ ` t ≈α t. Therefore,

∆ ` [a] t ≈α [a] t by (Abs-a).
If s ≡ f (t1, . . . , tn) then by induction hypothesis, ∆ ` ti ≈α ti for all

1 ≤ i ≤ n. The result follows by (F).

Lemma B.2. ≈α is symmetric, i.e., if ∆ ` s ≈α t then ∆ ` t ≈α s.

Proof. The proof is by induction on the derivation of ∆ ` s ≈α t by an
analysis of the last rule applied.

(a) The base case is trivial.

(b) The last rule is (Ds):

Then ∆ ` π · X ≈α γ · X is derivable from ds(π, γ)#X. So, ∆ `
γ · X ≈α π · X is also derivable from ds(π, γ)#X.

(c) The last rule is (Abs-a):

Hence ∆ ` [a] s ≈α [a] t is derivable from the premise ∆ ` s ≈α t.
The induction hypothesis gives ∆ ` t ≈α s and we derive ∆ `
[a] t ≈α [a] s using (Abs-a).

(d) The last rule is (Abs-b):

So ∆ ` [a] s ≈α [b] t is derivable from the premises ∆ ` (b a) · s ≈α

t and ∆ ` b#s. The derivation step

∆ ` (a b) · t ≈α s ∆ ` a#t
(Abs-b)

∆ ` [b] t ≈α [a] s

has two proof obligations: ∆ ` (a b) · t ≈α s and ∆ ` a#t which we
derive in the items below.

(i) By equivariance, Theorem 2.1, follows that ∆ ` s ≈α (a b) · t
is derivable, and by induction hypothesis it follows that
∆ ` (a b) · t ≈α s.

73

[June 16, 2021 at 14:22 – v1.2.1]

74 complete proofs

(ii) Since ∆ ` b#s and by item (i) above ∆ ` s ≈α (a b) · t, if
follows from Lemma 2.5 that ∆ ` b#(a b) · t is derivable.
Finally, equivariance gives ∆ ` (a b) · b#t which is equivalent
to ∆ ` a#t.

(e) The last rule is (F):

Then ∆ ` f (s1, . . . , sn) ≈α f (t1, . . . , tn) is derivable from ∆ ` si ≈α

ti, for 1 ≤ i ≤ n. Apply the inductive hypothesis to get ∆ ` ti ≈α si,
for 1 ≤ i ≤ n. Finally,

∆ ` f (t1, . . . , tn) ≈α f (s1, . . . , sn)

is derivable using (F).

Lemma B.3. ≈α is transitive, i.e., if ∆ ` s ≈α t and ∆ ` t ≈α u then
∆ ` s ≈α u.

Proof. The proof is by a simultaneous induction on the depth of the
derivations for ∆ ` s ≈α t and ∆ ` t ≈α u. First notice that since the
rules for (≈α) are syntax-directed the derivations for ∆ ` s ≈α t and
∆ ` t ≈α u must end with rules of the same type. The atomic case is
trivial.

1. The last rule is (Ds):

Then ∆ ` π · X ≈α γ · X and ∆ ` γ · X ≈α τ · X are derivable
from ∆ ` ds(π, γ) and ∆ ` ds(γ, τ), respectively. We need a
derivation

∆ ` ds(π, τ)
(Ds)

∆ ` π · X ≈α τ · X

This follows from the fact that ds(π, τ) ⊆ ds(π, γ) ∪ ds(γ, τ).
Indeed, let a ∈ ds(π, τ), and suppose by contradiction that a /∈
ds(π, γ)∪ ds(γ, τ). Hence, π(a) 6= τ(a) and π(a) = γ(a) = τ(a)
which is a contradiction.

2. The last rule is for abstractions (Abs-a) and/or (Abs-b).

(a) Both derivations ends with (Abs-a).

Therefore, ∆ ` [a] s ≈α [a] t and ∆ ` [a] t ≈α [a] u are deriv-
able from ∆ ` s ≈α t and ∆ ` t ≈α u, respectively. By
induction hypothesis we have that ∆ ` s ≈α u is derivable.
Hence, ∆ ` [a] s ≈α [a] u follows using (Abs-a).

(b) One of the derivations ends with (Abs-b). Suppose, without
loss of generality, ∆ ` [a] s ≈α [a] t and ∆ ` [a] t ≈α [b] u.

Then ∆ ` [a] s ≈α [a] t is derivable from ∆ ` s ≈α t, and
∆ ` [a] t ≈α [b] u is derivable from ∆ ` (b a) · t ≈α u and
∆ ` b#t. The derivation step

∆ ` (b a) · s ≈α u ∆ ` b#s
(Abs-b)

∆ ` [a] s ≈α [b] u

[June 16, 2021 at 14:22 – v1.2.1]

B.2 chapter 3 75

has two proof obligations: ∆ ` (b a) · s ≈α u and ∆ ` b#s.
We prove them in the two items below.

(i) Equivariance, Theorem 2.1, give us a derivation of ∆ `
t ≈α (a b) · u and combining this with the derivation
of ∆ ` s ≈α t and the induction hypothesis results in a
derivation of ∆ ` s ≈α (a b) · u. Again, by equivariance
we have a derivation of ∆ ` (b a) · s ≈α u.

(ii) By hypothesis we have a derivation of ∆ ` s ≈α t and
∆ ` b#t. Hence by Lemma 2.5 it follows that ∆ ` b#s.

(c) Both derivations ends with (Abs-b).

Then ∆ ` [a] s ≈α [b] t and ∆ ` [b] t ≈α [c] u are derivable
from (∆ ` (b a) · s ≈α t and b#s) and (∆ ` (c b) · t ≈α u and
c#t), respectively. Now the derivation

∆ ` (c a) · s ≈α u ∆ ` c#s
(Abs-b)

∆ ` [a] s ≈α [c] u

has the proof obligations: ∆ ` (c a) · s ≈α u and ∆ ` c#s
which we derive in the items below.

(i) Combining the derivation for ∆ ` (b a) · s ≈α t and
∆ ` t ≈α (b c) · u and using the inductive hypothesis
we get the derivation ∆ ` (b a) · s ≈α (b c) · u and by
equivariance:

∆ ` (c b) ◦ (b a) · s ≈α u

Now notice that ds((c b) ◦ (b a), (c a)) = {b, c}. By item
(ii) we have ∆ ` b#s and since ∆ ` b#s by hypothesis it
follows, from Lemma 2.6, that

∆ ` (c b) ◦ (b a) · s ≈α (c a) · s

Induction hypothesis one more time gives the desired
result, ∆ ` (c a) · s ≈α u.

(ii) Since ∆ ` c#t and ∆ ` (b a) · s ≈α t, by Lemma 2.5,
∆ ` c#(b a) · s. Equivariance give us the derivation
∆ ` (b a) · c#s, which is equivalent to ∆ ` c#s.

3. If the last rule is (F).

Then ∆ ` f (s1, . . . , sn) ≈α f (t1, . . . , tn) and ∆ ` f (t1, . . . , tn) ≈α

f (u1, . . . , un) are derivable from the premises ∆ ` si ≈α ti
and ∆ ` ti ≈α ui, for 1 ≤ i ≤ n, respectively. We derive
∆ ` f (s1, . . . , sn) ≈α f (u1, . . . , un) from the induction hypoth-
esis and using (F).

b.2 chapter 3

Lemma B.4. Let ∆ be a consistent context. If ∆ ` a#t and ∆ ` b#t then
∆ ` (a b) · t ≈α t.

[June 16, 2021 at 14:22 – v1.2.1]

76 complete proofs

Proof. The proof is by induction on the structure of t:

(a) The base case: ∆ ` a#c and ∆ ` b#c can be easily derived since
∆ ` (a b) · c ≈α c is equivalent to ∆ ` c ≈α c, which is an instance
of (≈α a).

(b) In the case for t ≡ π ·X we have ∆ ` π−1(a)#X and ∆ ` π−1(b)#X,
hence π−1(a)#X and π−1(b)#X are in ∆. By meta-level equivari-
ance ∆π contains the freshness assumptions a#X and b#X. Thefore,
the result follows from the derivation below

∆ ` a#X ∆ ` b#X (Ds)
∆ ` (a b) · X ≈α X

(c) If t is an abstraction we consider two cases.

(i) The abstracted atom is either a or b, w.l.g, t ≡ [a] t. Then
consider the following derivation:

(refl)
∆ ` t ≈α t

∆ ` (a b) · ((a b) · t) ≈α t

H
∆ ` b#t (eqv)

∆ ` a#(a b) · t
(Abs-b)

∆ ` [b] (a b) · t ≈α [a] t

(ii) The abstracted atom is different from a and b. Then consider
the following derivation:

I.H
∆ ` (a b) · t ≈α t

(Abs-b)
∆ ` [c] (a b) · t ≈α [c] t

(d) If t ≡ f (t1, . . . , tn): by induction hypothesis one has derivations
for ∆ ` (a b) · ti ≈α ti, for all 1 ≤ i ≤ n. Then ∆ ` (a b) ·
f (t1, . . . , tn) ≈α f (t1, . . . , tn) is derivable using (F).

Lemma B.5. Let A be a Σ-algebra and ς a valuation to the domain AS.
Then π · JtKς = Jπ · tKς.

Proof. The proof is by induction on the structure of of t. The base case
follows by equivariance of atom.

(a) If t ≡ γ · X, then;

π · Jγ · XKς = π · (γ · ς(X))

= πγ · ς(X)

= Jπ · (γ · X)Kς .

(b) If t ≡ [a] t, then;

π · J[a] tKς = π · abs(a, JtKς)

I.H
= abs(π(a), Jπ · tKς)

= Jπ · [a] tKς

[June 16, 2021 at 14:22 – v1.2.1]

B.2 chapter 3 77

(c) If t ≡ f (t1, . . . , tn) then;

π · J f (t1, . . . , tn)Kς = π · fA(Jt1Kς , . . . , JtnKς)

= fA(π · Jt1Kς , . . . , π · JtnKς)

I.H
= fA(Jπ · t1Kς , . . . , Jπ · tnKς)

= Jπ · f (t1, . . . , tn)Kς

Lemma B.6. Consider t ∈ F(Σ,D) as above. Suppose that Xσ ∈
F(Σ,D) for every X ∈ vars(t). Let ς be a valuation to the domain
F(T,D) such that Xσ ∈ ς(X) for every X ∈ vars(t). Then [tσ]T = JtKς.

Proof. The proof is by induction on the structure of terms.

(a) The base case, t ≡ a, follows from the fact that aσ ≡ a and
JaKς = [a]T.

(b) If t ≡ π · X:

[(π · X)σ]T = π · [Xσ]T

= π · ς(X)

= Jπ · XKς

(c) If t ≡ [a] t:

[([a] t)σ]T = [[a] tσ]T
= abs(a, [[a] tσ]T)
I.H
= abs(a, JtKς)

= J[a] tKς

(d) If t ≡ f (t1, . . . , tn):

[f (t1, . . . , tn)σ]T = [f (t1σ, . . . , tnσ)]T

= f F(T,D)([t1σ]T, . . . , [tnσ]T)

I.H
= f F(T,D)(Jt1Kς , . . . , JtnKς)

= J f (t1, . . . , tn)Kς

Theorem B.1. Let T be a nominal theory. The initial algebra F(T,D)
is a model of T.

Proof. Let ∆ ` t = u be an axiom of T. Take ς a valuation to the
domain F(T,D) and suppose that J∆Kς is valid, that is, a #sem Xς(X)

for every a#X in ∆. We must show that JtKς = JuKς.
Let X be the set of all variables in var(∆, t, u). By Lemma 3.11, for

every X ∈ X there is an element gX ∈ ς(X) such that ` a #sem gX

for every a#X ∈ ∆. Define σ as the substitution such that Xσ ≡ gX if
X ∈ X and Xσ ≡ X if X /∈ X .

[June 16, 2021 at 14:22 – v1.2.1]

78 complete proofs

By construction ` a#Xσ for every a#X in ∆, hence `T tσ = uσ by
an application of the rule (ax∆`t=u). It is clear that this is a ground
derivation (it does not mention any variable or instance of the rule
(fr)), so [tσ]T = [uσ]T. Therefore, [tσ]T = JtKς and [uσ]T = JuKς by
Lemma B.6 and the result follows.

[June 16, 2021 at 14:22 – v1.2.1]

B I B L I O G R A P H Y

[1] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Mari-
bel Fernández, and Daniele Nantes-Sobrinho. “On Solving Nom-
inal Fixpoint Equations.” In: Proc. 11th International Symposium
on Frontiers of Combining Systems, FroCoS. Vol. 10483. Lecture
Notes in Computer Science. Springer, 2017, pp. 209–226. doi:
10.1007/978-3-319-66167-4_12. url: https://doi.org/10.
1007/978-3-319-66167-4_12.

[2] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Mari-
bel Fernández, and Daniele Nantes-Sobrinho. “Nominal C-Unification.”
In: 27th International Symposium on Logic-Based Program Syn-
thesis and Transformation, LOPSTR 2017, Revised Selected Papers.
Vol. 10855. Lecture Notes in Computer Science. Springer, 2018,
pp. 235–251. doi: 10.1007/978- 3- 319- 94460- 9_14. url:
https://doi.org/10.1007/978-3-319-94460-9_14.

[3] Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-
Sobrinho. “Nominal Narrowing.” In: 1st International Conference
on Formal Structures for Computation and Deduction, FSCD 2016,
June 22-26, 2016, Porto, Portugal. Ed. by Delia Kesner and Brigitte
Pientka. Vol. 52. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016, 11:1–11:17. isbn: 978-3-95977-010-1. doi:
10.4230/LIPIcs.FSCD.2016.11. url: https://doi.org/10.
4230/LIPIcs.FSCD.2016.11.

[4] Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-
Sobrinho. “Fixed-Point Constraints for Nominal Equational Uni-
fication.” In: 3rd International Conference on Formal Structures for
Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford,
UK. Ed. by Hélène Kirchner. Vol. 108. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018, 7:1–7:16. isbn: 978-3-
95977-077-4. doi: 10.4230/LIPIcs.FSCD.2018.7. url: https:
//doi.org/10.4230/LIPIcs.FSCD.2018.7.

[5] Mauricio Ayala-Rincón, Maribel Fernández, Daniele Nantes-
Sobrinho, and Deivid Vale. “On Solving Nominal Disunification
Constraints.” In: Proc. 14th Logical and Semantic Frameworks with
Applications - LSFA 2019 To appear. Eletronic Notes in Theoretical
Computer Science. 2019.

[6] Franz Baader and Klaus U. Schulz. “Combination Techniques
and Decision Problems for Disunification.” In: Theor. Comput. Sci.
142.2 (1995), pp. 229–255. doi: 10.1016/0304-3975(94)00277-0.
url: https://doi.org/10.1016/0304-3975(94)00277-0.

[7] Franz Baader and Jörg H. Siekmann. “Handbook of Logic in
Artificial Intelligence and Logic Programming.” In: ed. by Dov
M. Gabbay, C. J. Hogger, and J. A. Robinson. New York, NY,
USA: Oxford University Press, Inc., 1994. Chap. Unification

79

[June 16, 2021 at 14:22 – v1.2.1]

https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.4230/LIPIcs.FSCD.2018.7
https://doi.org/10.4230/LIPIcs.FSCD.2018.7
https://doi.org/10.4230/LIPIcs.FSCD.2018.7
https://doi.org/10.1016/0304-3975(94)00277-0
https://doi.org/10.1016/0304-3975(94)00277-0
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

80 bibliography

Theory, pp. 41–125. isbn: 0-19-853746-8. url: https://www.cs.
bu.edu/~snyder/publications/UnifChapter.pdf.

[8] H. P. Barendregt. The lambda calculus : its syntax and semantics
/ H.P. Barendregt. English. North-Holland Pub. Co. ; sole dis-
tributors for the U.S.A. and Canada Elsevier North-Holland
Amsterdam ; New York : New York, 1981, xiv, 615 p. : isbn:
0444854908.

[9] Wray L. Buntine and Hans-Jürgen Bürckert. “On Solving Equa-
tions and Disequations.” In: J. ACM 41.4 (July 1994), pp. 591–
629. issn: 0004-5411. doi: 10.1145/179812.179813. url: http:
//doi.acm.org/10.1145/179812.179813.

[10] Christophe Calvès and Maribel Fernández. “A polynomial nom-
inal unification algorithm.” In: Theoretical Computer Science 403.2
(2008), pp. 285 –306. issn: 0304-3975. doi: https://doi.org/
10.1016/j.tcs.2008.05.012. url: http://www.sciencedirect.
com/science/article/pii/S0304397508003927.

[11] Christophe Calvès and Maribel Fernández. “Matching and alpha-
equivalence check for nominal terms.” In: Journal of Computer
and System Sciences 76.5 (2010). Workshop on Logic, Language,
Information and Computation, pp. 283 –301. issn: 0022-0000.
doi: https://doi.org/10.1016/j.jcss.2009.10.003. url:
http : / / www . sciencedirect . com / science / article / pii /

S0022000009000920.

[12] James Cheney. “Relating Nominal and Higher-Order Pattern
Unification (draft).” In: Proceedings of UNIF 2005. 2005, pp. 104–
119.

[13] James Cheney. “Equivariant Unification.” In: Journal of Automated
Reasoning 45.3 (2010), pp. 267–300. issn: 1573-0670. doi: 10.1007/
s10817-009-9164-3. url: https://doi.org/10.1007/s10817-
009-9164-3.

[14] James Cheney and Christian Urban. “αProlog: A Logic Program-
ming Language with Names, Binding and α-Equivalence.” In:
Logic Programming. Ed. by Bart Demoen and Vladimir Lifschitz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 269–
283. isbn: 978-3-540-27775-0.

[15] Hubert Comon. “Disunification: a Survey.” In: Computational
Logic: Essays in Honor of Alan Robinson. Ed. by Jean-Louis Lassez
and Gordon Plotkin. MIT Press, 1991, pp. 322–359.

[16] Hubert Comon and Pierre Lescanne. “Equational problems and
disunification.” In: Journal of Symbolic Computation 7.3 (1989).
Unification: Part 1, pp. 371 –425. issn: 0747-7171. doi: https:
//doi.org/10.1016/S0747-7171(89)80017-3. url: http://www.
sciencedirect.com/science/article/pii/S0747717189800173.

[17] Maribel Fernández. “Narrowing Based Procedures for Equa-
tional Disunification.” In: Appl. Algebra Eng. Commun. Comput.
3 (1992), pp. 1–26. doi: 10.1007/BF01189020. url: https://doi.
org/10.1007/BF01189020.

[June 16, 2021 at 14:22 – v1.2.1]

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
http://doi.acm.org/10.1145/179812.179813
http://doi.acm.org/10.1145/179812.179813
https://doi.org/10.1145/179812.179813
http://doi.acm.org/10.1145/179812.179813
http://doi.acm.org/10.1145/179812.179813
http://www.sciencedirect.com/science/article/pii/S0304397508003927
http://www.sciencedirect.com/science/article/pii/S0304397508003927
https://doi.org/https://doi.org/10.1016/j.tcs.2008.05.012
https://doi.org/https://doi.org/10.1016/j.tcs.2008.05.012
http://www.sciencedirect.com/science/article/pii/S0304397508003927
http://www.sciencedirect.com/science/article/pii/S0304397508003927
https://doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/https://doi.org/10.1016/j.jcss.2009.10.003
http://www.sciencedirect.com/science/article/pii/S0022000009000920
http://www.sciencedirect.com/science/article/pii/S0022000009000920
https://homepages.inf.ed.ac.uk/jcheney/publications/cheney05unif.pdf
https://doi.org/10.1007/s10817-009-9164-3
https://doi.org/10.1007/s10817-009-9164-3
https://doi.org/10.1007/s10817-009-9164-3
https://doi.org/10.1007/s10817-009-9164-3
https://doi.org/https://doi.org/10.1016/S0747-7171(89)80017-3
https://doi.org/https://doi.org/10.1016/S0747-7171(89)80017-3
http://www.sciencedirect.com/science/article/pii/S0747717189800173
http://www.sciencedirect.com/science/article/pii/S0747717189800173
https://doi.org/10.1007/BF01189020
https://doi.org/10.1007/BF01189020
https://doi.org/10.1007/BF01189020

bibliography 81

[18] Maribel Fernández and Murdoch J. Gabbay. “Nominal rewrit-
ing.” In: Information and Computation 205.6 (2007), pp. 917 –965.
issn: 0890-5401. doi: https://doi.org/10.1016/j.ic.2006.12.
002. url: http://www.sciencedirect.com/science/article/
pii/S0890540106001635.

[19] Murdoch J. Gabbay. “Nominal Algebra and the HSP Theorem.”
In: Journal of Logic and Computation 19.2 (Oct. 2008), pp. 341–367.
issn: 0955-792X. doi: 10.1093/logcom/exn055. eprint: http://
oup.prod.sis.lan/logcom/article-pdf/19/2/341/3510563/

exn055.pdf. url: https://doi.org/10.1093/logcom/exn055.

[20] Murdoch J. Gabbay and Aad Mathijssen. “Capture-Avoiding
Substitution as a Nominal Algebra.” In: Formal Aspects of Com-
puting 20.4-5 (2008), pp. 451–479. doi: 10.1007/11921240_14.

[21] Murdoch J. Gabbay and Aad Mathijssen. “The lambda-calculus
is nominal algebraic.” In: Reasoning in simple type theory: Festschrift
in Honour of Peter B. Andrews on his 70th Birthday. Ed. by Christoph
Benzmüller, Chad Brown, Jörg Siekmann, and Rick Statman.
Studies in Logic and the Foundations of Mathematics. IFCoLog,
2008.

[22] Murdoch J. Gabbay and Aad Mathijssen. “Nominal universal
algebra: equational logic with names and binding.” In: Journal of
Logic and Computation 19.6 (2009), pp. 1455–1508. doi: 10.1093/
logcom/exp033.

[23] Murdoch J. Gabbay and Andrew M. Pitts. “A New Approach
to Abstract Syntax with Variable Binding.” In: Formal Aspects
of Computing 13.3 (2002), pp. 341–363. issn: 1433-299X. doi:
10.1007/s001650200016. url: https://doi.org/10.1007/
s001650200016.

[24] Brian Huffman and Christian Urban. “A New Foundation for
Nominal Isabelle.” In: Interactive Theorem Proving. Ed. by Matt
Kaufmann and Lawrence C. Paulson. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 35–50. isbn: 978-3-642-14052-5.

[25] Denis Lugiez. “Higher Order Disunification: Some decidable
cases.” In: First International Conference on Constraints in Computa-
tional Logics, CCL. Vol. 845. Lecture Notes in Computer Science.
Springer, 1994, pp. 121–135. doi: 10.1007/BFb0016848. url:
https://doi.org/10.1007/BFb0016848.

[26] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer
Science. New York, NY, USA: Cambridge University Press, 2013.
isbn: 1107017785, 9781107017788.

[27] Zhenyu Qian. “” In: TAPSOFT’93: Theory and Practice of Software
Development. Ed. by M. C. Gaudel and J. P. Jouannaud. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 391–405. isbn:
978-3-540-47598-9.

[June 16, 2021 at 14:22 – v1.2.1]

http://www.sciencedirect.com/science/article/pii/S0890540106001635
http://www.sciencedirect.com/science/article/pii/S0890540106001635
https://doi.org/https://doi.org/10.1016/j.ic.2006.12.002
https://doi.org/https://doi.org/10.1016/j.ic.2006.12.002
http://www.sciencedirect.com/science/article/pii/S0890540106001635
http://www.sciencedirect.com/science/article/pii/S0890540106001635
https://doi.org/10.1093/logcom/exn055
http://oup.prod.sis.lan/logcom/article-pdf/19/2/341/3510563/exn055.pdf
http://oup.prod.sis.lan/logcom/article-pdf/19/2/341/3510563/exn055.pdf
http://oup.prod.sis.lan/logcom/article-pdf/19/2/341/3510563/exn055.pdf
https://doi.org/10.1093/logcom/exn055
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
https://doi.org/10.1007/11921240_14
http://www.gabbay.org.uk/papers.html#lamcna
http://www.gabbay.org.uk/papers.html#lamcna
http://www.gabbay.org.uk/papers.html#nomuae
http://www.gabbay.org.uk/papers.html#nomuae
https://doi.org/10.1093/logcom/exp033
https://doi.org/10.1093/logcom/exp033
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/BFb0016848
https://doi.org/10.1007/BFb0016848
https://link.springer.com/content/pdf/10.1007unification of higher-order patterns

82 bibliography

[28] Veena Ravishankar, Kimberly A. Gero, and Paliath Narendran.
“Asymmetric Unification and Disunification.” In: CoRR abs/1706.05066

(2017). arXiv: 1706.05066. url: http://arxiv.org/abs/1706.
05066.

[29] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay.
“Nominal unification.” In: Theoretical Computer Science 323.1
(2004), pp. 473 –497. issn: 0304-3975. doi: https://doi.org/
10.1016/j.tcs.2004.06.016. url: http://www.sciencedirect.
com/science/article/pii/S0304397504004013.

[June 16, 2021 at 14:22 – v1.2.1]

https://arxiv.org/abs/1706.05066
http://arxiv.org/abs/1706.05066
http://arxiv.org/abs/1706.05066
http://www.sciencedirect.com/science/article/pii/S0304397504004013
https://doi.org/https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/https://doi.org/10.1016/j.tcs.2004.06.016
http://www.sciencedirect.com/science/article/pii/S0304397504004013
http://www.sciencedirect.com/science/article/pii/S0304397504004013

colophon

This version of the thesis (v1.2.1) is a slight update on the version
submitted. The change is basically in typographic style and some small
typo fixing here and there. Thank you very much for your feedback
and contribution.

[June 16, 2021 at 14:22 – v1.2.1]

	On Solving Nominal Disunification Problems
	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Nominal Abstract Syntax
	2.1 Nominal Terms
	2.1.1 Substitutions and Permutation Action

	2.2 Equality and Derivability
	2.2.1 Properties of freshness and alpha-equivalence

	2.3 Nominal Constraint Solving and Unification
	2.3.1 Nominal Constraint Solving
	2.3.2 Equational Problems
	2.3.3 Nominal Unification

	3 Nominal Universal Algebra
	3.1 A More General Derivation System
	3.1.1 Instantiating Axioms
	3.1.2 Permutating Atoms: Alpha-equivalence
	3.1.3 Proof-theoretical Results

	3.2 Denotational Semantics
	3.2.1 Nominal Sets
	3.2.2 Semantic Freshness
	3.2.3 Products
	3.2.4 Equivariant Functions

	3.3 Nominal Algebra
	3.3.1 Soundness
	3.3.2 The Ground Initial Algebra F(T,D)
	3.3.3 Completeness for Equality Derivations
	3.3.4 Completeness for Freshness

	3.4 Homomorphisms, Subalgebras and Product Algebras
	3.4.1 Homomorphisms and Homomorphic Images.
	3.4.2 Subalgebras
	3.4.3 Product Algebras
	3.4.4 Atoms-abstraction

	3.5 Varieties and Equational Classes of Algebras
	3.5.1 Surjections Out of Initial Algebras
	3.5.2 Injections Out of Initial Algebras
	3.5.3 The Nominal HSP Theorem

	4 Nominal Disunification Constraints
	4.1 Generalized Instantiation
	4.2 Solving Nominal Constraints

	5 Conclusions and Future Work
	A ZFA Set Theory and Equivariance
	B Complete Proofs
	B.1 Chapter 2
	B.2 Chapter 3

	 Bibliography
	Colophon

