

Hydra Battles and AC Termination

Nao Hirokawa

Aart Middeldorp

JAIST Univers

University of Innsbruck

Outline

- 1. Battle of Hercules and Hydra
- 2. Termination
- 3. Hydras modulo AC
- 4. Termination modulo AC
- 5. Conclusion

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left.

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf *I* that has a grandparent *g*, the branch from *g* to the parent of *I* gets multiplied, with the number of copies depending on the number of decapitations so far.

Can Hercules win the battle?

• termination is not provable in Peano arithmetic (Kirby and Paris 1982)

- termination is not provable in Peano arithmetic (Kirby and Paris 1982)
- variations are described in
 - Buchholz 1987
 - Hamano and Okada 1997
 - Beklemishev 2006
 - Fleischer 2009

- termination is not provable in Peano arithmetic (Kirby and Paris 1982)
- variations are described in
 - Buchholz 1987
 - Hamano and Okada 1997
 - Beklemishev 2006
 - Fleischer 2009

TRS Encodings

- Dershowitz and Jouannaud 1990
- Touzet 1998
- Lepper 2004

- Dershowitz and Moser 2007
- Moser 2009
- Beklemishev and Onoprienko 2015

- termination is not provable in Peano arithmetic (Kirby and Paris 1982)
- variations are described in
 - Buchholz 1987
 - Hamano and Okada 1997
 - Beklemishev 2006
 - Fleischer 2009

TRS Encodings

- Dershowitz and Jouannaud 1990
- Touzet 1998
- Lepper 2004

- Dershowitz and Moser 2007
- Moser 2009
- Beklemishev and Onoprienko 2015

Definition (Touzet 1998)

TRS \mathbb{T}

- signature 0
- (constant) [] \circ (unary) c^1 H (binary) c^2 (ternary)

 $\begin{array}{l} \rightarrow \circ x \\ \rightarrow \ c^{1}(y,z) \\ \rightarrow \ c^{2}(x,y,z) \\ \rightarrow \ c^{1}(x, H(x,y)) \\ \rightarrow \ c^{2}(x, H(x,y),z) \end{array}$

rewrite rules

$\llbracket \circ x ightarrow \circ \llbracket x$	H(0, <i>x</i>)
$\bullet [] x \rightarrow [] \bullet \bullet x$	• H(H(0,y),z)
$\circ x ightarrow ullet $	• $H(H(H(0,x),y),z)$
ullet x ightarrow x	• c ¹ (x,y)
$c^1(y,z)\to\circ z$	• $c^2(x,y,z)$
$c^2(x,y,z) ightarrow \circ H(y,z)$	

Definition (Touzet 1998)

 c^2

TRS \mathbb{T}

- signature 0
- (constant) [] \circ (unary) c^1 H (binary) c^2 (ternary)

rewrite rules

$\llbracket \circ x \rightarrow \circ \rrbracket x$	$H(0, x) o \circ x$
$\bullet [] x \rightarrow [] \bullet \bullet x$	• $H(H(0,y),z) \rightarrow c^1(y,z)$
$\circ x ightarrow ullet \ x$	• $H(H(H(0,x),y),z) \rightarrow c^2(x,y,z)$
ullet x ightarrow x	• $c^1(x,y) \rightarrow c^1(x,H(x,y))$
$c^1(y,z) ightarrow \circ z$	• $c^2(x,y,z) \rightarrow c^2(x,H(x,y))$
$(x,y,z) ightarrow \circ {\sf H}(y,z)$	

Remark

TRS ${\mathbb T}$ models specific strategy for Hercules to battle Hydras up to height 4

, Z)

Definition (Touzet 1998)

 c^2

TRS \mathbb{T}

- signature 0
- (constant) [] \circ (unary) c^1 H (binary) c^2 (ternary)

rewrite rules

$[\circ x \rightarrow \circ [x]$	$H(0, x) o \circ x$
$\bullet [] x \rightarrow [] \bullet \bullet x$	• $H(H(0,y),z) \rightarrow c^1(y,z)$
$\circ x ightarrow ullet \ x$	• $H(H(H(0,x),y),z) \rightarrow c^2(x,y,z)$
ullet x ightarrow x	• $c^1(x,y) \rightarrow c^1(x,H(x,y))$
$c^1(y,z) ightarrow \circ z$	• $c^2(x,y,z) \rightarrow c^2(x,H(x,y))$
$(x,y,z) ightarrow \circ {\sf H}(y,z)$	

Remark

TRS ${\mathbb T}$ models specific strategy for Hercules to battle Hydras up to height 4

,z)

TRS $\,\mathbb T\,$ models specific strategy for Hercules to battle Hydras up to height 4

TRS ${\mathbb T}$ models specific strategy for Hercules to battle Hydras up to height 4

TRS ${\mathbb T}$ models specific strategy for Hercules to battle Hydras up to height 4

TRS $\,\mathbb T\,$ models specific strategy for Hercules to battle Hydras up to height 4

Outline

1. Battle of Hercules and Hydra

2. Termination

- 3. Hydras modulo AC
- 4. Termination modulo AC
- 5. Conclusion

• well-founded monotone \mathcal{F} -algebra $(\mathcal{A}, >)$ consists of non-empty algebra $\mathcal{A} = (\mathcal{A}, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ with well-founded order > on \mathcal{A} such that every $f_{\mathcal{A}}$ is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

well-founded monotone *F*-algebra (*A*, >) consists of non-empty algebra *A* = (*A*, {*f*_A}_{*f*∈*F*}) with well-founded order > on *A* such that every *f*_A is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

• relation $>_{\mathcal{A}}$ on terms: $s >_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$ for all assignments α

• well-founded monotone \mathcal{F} -algebra $(\mathcal{A}, >)$ consists of non-empty algebra $\mathcal{A} = (\mathcal{A}, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ with well-founded order > on \mathcal{A} such that every $f_{\mathcal{A}}$ is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

• relation $>_{\mathcal{A}}$ on terms: $s >_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$ for all assignments α

Lemma

 $>_{\mathcal{A}}$ is reduction order for every well-founded monotone algebra $(\mathcal{A},>)$

• well-founded monotone \mathcal{F} -algebra $(\mathcal{A}, >)$ consists of non-empty algebra $\mathcal{A} = (\mathcal{A}, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ with well-founded order > on \mathcal{A} such that every $f_{\mathcal{A}}$ is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

• relation $>_{\mathcal{A}}$ on terms: $s >_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$ for all assignments α

Lemma

 $>_{\mathcal{A}}$ is reduction order for every well-founded monotone algebra $(\mathcal{A},>)$

Theorem (Lankford 1979; Zantema 1994)

TRS \mathcal{R} is terminating $\iff \mathcal{R} \subseteq >_{\mathcal{A}}$ for well-founded monotone algebra $(\mathcal{A}, >)$

algebra (A, >) is simple monotone if every interpretation function f_A is **1** weakly monotone

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) \geqslant f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $1 \leq i \leq n$ and $a_1, \ldots, a_n, b \in A$ with $a_i > b$

algebra $(\mathcal{A},>)$ is simple monotone if every interpretation function $f_{\mathcal{A}}$ is

weakly monotone

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) \geqslant f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $1 \leq i \leq n$ and $a_1, \ldots, a_n, b \in A$ with $a_i > b$

Simple

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) \geqslant a_i$$

for all $1 \leq i \leq n$

algebra $(\mathcal{A},>)$ is simple monotone if every interpretation function $f_\mathcal{A}$ is

weakly monotone

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) \geqslant f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $1 \leq i \leq n$ and $a_1, \ldots, a_n, b \in A$ with $a_i > b$

2 simple

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) \geqslant a_i$$

for all $1 \leq i \leq n$

Remark

 $>_{\mathcal{A}}$ need not be reduction order for well-founded simple monotone algebra $(\mathcal{A},>)$

TRS $\mathcal R$ over finite signature is terminating if $\mathcal R \subseteq >_{\mathcal A}$ for simple monotone algebra $(\mathcal A,>)$

Theorem (Touzet 1998; Zantema 2001)

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq >_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A}, >)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Theorem (Touzet 1998; Zantema 2001)

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq >_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A}, >)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Remarks

• termination proof uses ordinals
TRS $\mathcal R$ over finite signature is terminating if $\mathcal R \subseteq >_{\mathcal A}$ for simple monotone algebra $(\mathcal A,>)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Remarks

- termination proof uses ordinals
- addition on ordinals is weakly monotone but not strictly monotone

 $\mathbf{2} + \boldsymbol{\omega} = \mathbf{1} + \boldsymbol{\omega}$

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq >_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A}, >)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Remarks

- termination proof uses ordinals
- addition on ordinals is weakly monotone but not strictly monotone

 $\mathbf{2} + \boldsymbol{\omega} = \mathbf{1} + \boldsymbol{\omega}$

natural addition on ordinals is strictly monotone

$$2 \oplus \omega$$
 > $1 \oplus \omega$

TRS $\mathcal R$ over finite signature is terminating if $\mathcal R \subseteq >_{\mathcal A}$ for simple monotone algebra $(\mathcal A,>)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Remarks

- termination proof uses ordinals
- addition on ordinals is weakly monotone but not strictly monotone

 $\mathbf{2} + \omega = \mathbf{1} + \omega$

natural addition on ordinals is strictly monotone

$$\mathbf{2} \oplus \boldsymbol{\omega} = \boldsymbol{\omega} + \mathbf{2} > \boldsymbol{\omega} + \mathbf{1} = \mathbf{1} \oplus \boldsymbol{\omega}$$

 $\mathsf{TRS}\ \mathcal{R}$

$f(g(x)) \rightarrow g(f(f(x)))$

is terminating

 $\mathsf{TRS}\,\mathcal{R}$

$f(g(x)) \rightarrow g(f(f(x)))$

is terminating

• algebra $(\mathcal{A},>)$ with carrier $\mathbb O$ (set of ordinals below ϵ_0) and interpretations

$$f_{\mathcal{A}}(x) = x + 1$$
 $g_{\mathcal{A}}(x) = x + \omega$

 $\mathsf{TRS}\,\mathcal{R}$

$f(g(x)) \rightarrow g(f(f(x)))$

is terminating

• algebra $(\mathcal{A},>)$ with carrier $\mathbb O$ (set of ordinals below ϵ_0) and interpretations

$$\mathcal{A}_\mathcal{A}(x) = x + 1$$

 $\mathsf{g}_{\mathcal{A}}(\mathsf{x})=\mathsf{x}+\omega$

• $(\mathcal{A},>)$ is weakly monotone and simple

 $\mathsf{TRS}\ \mathcal{R}$

$f(g(x)) \rightarrow g(f(f(x)))$

is terminating

• algebra $(\mathcal{A},>)$ with carrier $\mathbb O$ (set of ordinals below ϵ_0) and interpretations

$$\mathsf{f}_\mathcal{A}(\mathsf{x}) = \mathsf{x} + \mathsf{1} \qquad \qquad \mathsf{g}_\mathcal{A}(\mathsf{x}) = \mathsf{x} + \omega$$

- $(\mathcal{A},>)$ is weakly monotone and simple
- $\mathcal{R} \subseteq >_{\mathcal{A}}$

 $f_{\mathcal{A}}(g_{\mathcal{A}}(x)) = x + \omega + 1$ $x + 2 + \omega = g_{\mathcal{A}}(f_{\mathcal{A}}(f_{\mathcal{A}}(x)))$

 $\mathsf{TRS}\,\mathcal{R}$

$f(g(x)) \rightarrow g(f(f(x)))$

is terminating

• algebra $(\mathcal{A},>)$ with carrier $\mathbb O$ (set of ordinals below ϵ_0) and interpretations

$$f_{\mathcal{A}}(x) = x + 1$$
 $g_{\mathcal{A}}(x) = x + \omega$

- $(\mathcal{A},>)$ is weakly monotone and simple
- $\bullet \ \mathcal{R} \subseteq {}_{\mathcal{A}}$

$$\mathsf{f}_\mathcal{A}(\mathsf{g}_\mathcal{A}(\mathsf{x})) = \mathsf{x} + \omega + 1 > \mathsf{x} + \omega = \mathsf{x} + 2 + \omega = \mathsf{g}_\mathcal{A}(\mathsf{f}_\mathcal{A}(\mathsf{f}_\mathcal{A}(\mathsf{x})))$$

Outline

- 1. Battle of Hercules and Hydra
- 2. Termination
- 3. Hydras modulo AC
- 4. Termination modulo AC
- 5. Conclusion

$$x | y = y | x$$
 $(x | y) | z = x | (y | z)$

$$x | y = y | x$$
 $(x | y) | z = x | (y | z)$

$$x | y = y | x$$
 $(x | y) | z = x | (y | z)$

$$x | y = y | x$$
 $(x | y) | z = x | (y | z)$

$$\mathcal{H} = \mathcal{T}(\{\mathbf{h}, \mathbf{i}, |\})$$

Definition TRS Ⅲ

signature h i

$$\mathcal{H} = \mathcal{T}(\{\mathsf{h},\mathsf{i},\mathsf{i}\})$$
 $\mathcal{N} = \mathcal{T}(\{\mathsf{0},\mathsf{s}\})$

Definition

TRS \mathbb{H}

• signature h i | 0 (constant) s (unary)

$$\mathcal{H} = \mathcal{T}(\{\mathsf{h},\mathsf{i},\mathsf{i}\})$$
 $\mathcal{N} = \mathcal{T}(\{\mathsf{0},\mathsf{s}\})$

Definition TRS III • signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

$$\mathcal{H} = \mathcal{T}(\{\mathbf{h}, \mathbf{i}, |\})$$
 $\mathcal{N} = \mathcal{T}(\{\mathbf{0}, \mathbf{s}\})$

Definition

TRS III

- signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)
- rewrite rules

 $egin{aligned} \mathsf{A}(n, \mathsf{i}(\mathsf{h})) &
ightarrow \mathsf{h} \ \mathsf{A}(n, \mathsf{i}(\mathsf{h} \,| \, x)) &
ightarrow \mathsf{A}(\mathsf{s}(n), \mathsf{i}(x)) \ \mathsf{A}(n, \mathsf{i}(x)) &
ightarrow \mathsf{B}(n, \mathsf{D}(\mathsf{s}(n), \mathsf{i}(x))) \end{aligned}$

$$\mathcal{H} = \mathcal{T}(\{h,i,|\}) \qquad \mathcal{N} = \mathcal{T}(\{0,s\})$$

Definition

TRS III

- signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)
- rewrite rules

 $egin{aligned} \mathsf{A}(n, \mathsf{i}(\mathsf{h})) &
ightarrow \mathsf{h} \ \mathsf{A}(n, \mathsf{i}(\mathsf{h}\,|\, x)) &
ightarrow \mathsf{A}(\mathsf{s}(n), \mathsf{i}(x)) \ \mathsf{A}(n, \mathsf{i}(x)) &
ightarrow \mathsf{B}(n, \mathsf{D}(\mathsf{s}(n), \mathsf{i}(x))) \end{aligned}$

 $D(n, i(i(x))) \rightarrow i(D(n, i(x)))$ $D(n, i(i(x) | y)) \rightarrow i(D(n, i(x)) | y)$

 $\mathcal{H} = \mathcal{T}(\{h,i,|\}) \qquad \mathcal{N} = \mathcal{T}(\{0,s\})$

Definition

TRS Ⅲ

- signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)
- rewrite rules

 $egin{aligned} \mathsf{A}(n, \mathsf{i}(\mathsf{h})) &
ightarrow \mathsf{h} \ \mathsf{A}(n, \mathsf{i}(\mathsf{h}\,|\, x)) &
ightarrow \mathsf{A}(\mathsf{s}(n), \mathsf{i}(x)) \ \mathsf{A}(n, \mathsf{i}(x)) &
ightarrow \mathsf{B}(n, \mathsf{D}(\mathsf{s}(n), \mathsf{i}(x))) \end{aligned}$

 $D(n, i(i(x))) \rightarrow i(D(n, i(x)))$ $D(n, i(i(x) | y)) \rightarrow i(D(n, i(x)) | y)$ $D(n, i(i(h | x) | y)) \rightarrow i(C(n, i(x)) | y)$ $D(n, i(i(h | x))) \rightarrow i(C(n, i(x)))$ $D(n, i(i(h) | y)) \rightarrow i(C(n, h) | y)$ $D(n, i(i(h))) \rightarrow i(C(n, h))$

 $\mathcal{H} = \mathcal{T}(\{h,i,|\}) \qquad \mathcal{N} = \mathcal{T}(\{0,s\})$

Definition

TRS Ⅲ

• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

rewrite rules

```
\begin{array}{l} \mathsf{A}(n,\mathsf{i}(\mathsf{h})) \to \mathsf{h} \\ \mathsf{A}(n,\mathsf{i}(\mathsf{h}\,|\,x)) \to \mathsf{A}(\mathsf{s}(n),\mathsf{i}(x)) \\ \mathsf{A}(n,\mathsf{i}(x)) \to \mathsf{B}(n,\mathsf{D}(\mathsf{s}(n),\mathsf{i}(x))) \\ \mathsf{C}(\mathsf{0},x) \to \mathsf{E}(x) \\ \mathsf{C}(\mathsf{s}(n),x) \to x \,|\, \mathsf{C}(n,x) \end{array}
```

 $D(n, i(i(x))) \rightarrow i(D(n, i(x)))$ $D(n, i(i(x) | y)) \rightarrow i(D(n, i(x)) | y)$ $D(n, i(i(h | x) | y)) \rightarrow i(C(n, i(x)) | y)$ $D(n, i(i(h | x))) \rightarrow i(C(n, i(x)))$ $D(n, i(i(h) | y)) \rightarrow i(C(n, h) | y)$ $D(n, i(i(h))) \rightarrow i(C(n, h))$

 $\mathcal{H} = \mathcal{T}(\{h,i,|\}) \qquad \mathcal{N} = \mathcal{T}(\{0,s\})$

Definition

TRS III

• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

rewrite rules

```
\begin{array}{l} \mathsf{A}(n,\mathsf{i}(\mathsf{h})) \to \mathsf{h} \\ \mathsf{A}(n,\mathsf{i}(\mathsf{h}\,|\,x)) \to \mathsf{A}(\mathsf{s}(n),\mathsf{i}(x)) \\ \mathsf{A}(n,\mathsf{i}(x)) \to \mathsf{B}(n,\mathsf{D}(\mathsf{s}(n),\mathsf{i}(x))) \\ \mathsf{C}(\mathsf{0},x) \to \mathsf{E}(x) \\ \mathsf{C}(\mathsf{s}(n),x) \to x\,|\,\mathsf{C}(n,x) \\ \mathsf{i}(\mathsf{E}(x)\,|\,y) \to \mathsf{E}(\mathsf{i}(x\,|\,y)) \\ \mathsf{i}(\mathsf{E}(x)) \to \mathsf{E}(\mathsf{i}(x)) \end{array}
```

 $D(n, i(i(x))) \rightarrow i(D(n, i(x)))$ $D(n, i(i(x) | y)) \rightarrow i(D(n, i(x)) | y)$ $D(n, i(i(h | x) | y)) \rightarrow i(C(n, i(x)) | y)$ $D(n, i(i(h | x))) \rightarrow i(C(n, i(x)))$ $D(n, i(i(h) | y)) \rightarrow i(C(n, h) | y)$ $D(n, i(i(h))) \rightarrow i(C(n, h))$

$$\mathcal{H} = \mathcal{T}(\{\mathbf{h}, \mathbf{i}, |\})$$
 $\mathcal{N} = \mathcal{T}(\{\mathbf{0}, \mathbf{s}\})$

Definition

TRS Ⅲ

• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

rewrite rules

```
\begin{array}{l} \mathsf{A}(n,\mathsf{i}(\mathsf{h})) \to \mathsf{h} \\ \mathsf{A}(n,\mathsf{i}(\mathsf{h}\,|\,x)) \to \mathsf{A}(\mathsf{s}(n),\mathsf{i}(x)) \\ \mathsf{A}(n,\mathsf{i}(x)) \to \mathsf{B}(n,\mathsf{D}(\mathsf{s}(n),\mathsf{i}(x))) \\ \mathsf{C}(0,x) \to \mathsf{E}(x) \\ \mathsf{C}(\mathsf{s}(n),x) \to x\,|\,\mathsf{C}(n,x) \\ \mathsf{i}(\mathsf{E}(x)\,|\,y) \to \mathsf{E}(\mathsf{i}(x\,|\,y)) \\ \mathsf{i}(\mathsf{E}(x)) \to \mathsf{E}(\mathsf{i}(x)) \end{array}
```

 $D(n, i(i(x))) \rightarrow i(D(n, i(x)))$ $D(n, i(i(x) | y)) \rightarrow i(D(n, i(x)) | y)$ $D(n, i(i(h | x) | y)) \rightarrow i(C(n, i(x)) | y)$ $D(n, i(i(h | x))) \rightarrow i(C(n, i(x)))$ $D(n, i(i(h) | y)) \rightarrow i(C(n, h) | y)$ $D(n, i(i(h))) \rightarrow i(C(n, h))$ $B(n, E(x)) \rightarrow A(s(n), x)$

if $\textit{H},\textit{H}' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then

$$A(n,H) (\rightarrow / =_{AC})^+ A(s(n),H')$$

for some $n \in \mathcal{N}$

if $\textit{H},\textit{H}' \in \mathcal{H} \setminus \{h\}\,$ encode successive Hydras in arbitrary battle then

$$\mathsf{A}(n,H) \ (o / =_{\mathsf{AC}})^+ \ \mathsf{A}(\mathsf{s}(n),H')$$

for some $\mathbf{n} \in \mathcal{N}$

Example

A(0, *H*₁)

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then

$$A(n,H) (\rightarrow / =_{AC})^+ A(s(n),H')$$

for some $\mathbf{n} \in \mathcal{N}$

Example

 $\mathsf{A}(\mathbf{0}, \textit{H}_{1}) \, \rightarrow \, \mathsf{B}(\mathbf{0}, \mathsf{D}(\mathsf{s}(\mathbf{0}), \textit{H}_{1}))$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then A $(n, H) \ (\rightarrow / =_{AC})^+ \ A(s(n), H')$

for some $n \in \mathcal{N}$

$$\mathsf{A}(0,H_1) \, \rightarrow \, \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_1)) \, =_{\mathsf{AC}} \cdot \rightarrow \, \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h}))$$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then

$$\mathsf{A}(n,H) \ (o / =_{\mathsf{AC}})^+ \ \mathsf{A}(\mathsf{s}(n),H')$$

for some $n \in \mathcal{N}$

Example

$\begin{array}{l} \mathsf{A}(\mathbf{0},H_1) \rightarrow \mathsf{B}(\mathbf{0},\mathsf{D}(\mathsf{s}(\mathbf{0}),H_1)) =_{\mathsf{AC}} \cdot \rightarrow \mathsf{B}(\mathbf{0},\mathsf{i}(\mathsf{D}(\mathsf{s}(\mathbf{0}),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ \rightarrow \mathsf{B}(\mathbf{0},\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(\mathbf{0}),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \end{array}$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then

$$\mathsf{A}(n,H) \ (o / =_{\mathsf{AC}})^+ \ \mathsf{A}(\mathsf{s}(n),H')$$

for some $n \in \mathcal{N}$

Example

 $\begin{array}{l} \mathsf{A}(0,H_1) \to \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_1)) =_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{C}(\mathsf{s}(0),\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \end{array}$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then

$$\mathsf{A}(n,H) \ (o / =_{\mathsf{AC}})^+ \ \mathsf{A}(\mathsf{s}(n),H')$$

for some $n \in \mathcal{N}$

Example

$$\begin{split} \mathsf{A}(0,H_1) \, &\to \, \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_1)) \, =_{\mathsf{AC}} \cdot \to \, \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \, \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \, \to \, \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{C}(\mathsf{s}(0),\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \, \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{C}(0,\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \end{split}$$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then $A(n, H) \ (\rightarrow / =_{AC})^+ \ A(s(n), H')$

for some $n \in \mathcal{N}$

Example

$$\begin{split} \mathsf{A}(0,H_1) \, &\to \, \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_1)) \, =_{\mathsf{AC}} \cdot \to \, \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \, \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \, \to \, \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{C}(\mathsf{s}(0),\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \, \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{C}(0,\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \, \to \, \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{E}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \end{split}$$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then $A(n, H) \ (\rightarrow / =_{AC})^+ \ A(s(n), H')$

for some $n \in \mathcal{N}$

$$\begin{split} \mathsf{A}(0,H_1) &\to \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_1)) =_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{C}(\mathsf{s}(0),\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{C}(0,\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{E}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &=_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \end{split}$$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then $A(n, H) \ (\rightarrow / =_{AC})^+ \ A(s(n), H')$

for some $n \in \mathcal{N}$

$$\begin{split} \mathsf{A}(0,H_1) &\to \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_1)) =_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{C}(\mathsf{s}(0),\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{C}(0,\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{E}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &=_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \end{split}$$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then $A(n, H) \ (\rightarrow / =_{AC})^+ \ A(s(n), H')$

for some $n \in \mathcal{N}$

$$\begin{split} \mathsf{A}(0,H_1) &\to \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_1)) =_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{C}(\mathsf{s}(0),\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{C}(0,\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{E}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &=_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{E}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \end{split}$$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then $A(n, H) \ (\rightarrow / =_{AC})^{+} \ A(s(n), H')$

for some $n \in \mathcal{N}$

$$\begin{split} \mathsf{A}(0,H_1) &\to \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_1)) =_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{C}(\mathsf{s}(0),\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{C}(0,\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{E}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &=_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ &\to \mathsf{B}(0,\mathsf{E}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{A}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h}) \end{split}$$

if $H, H' \in \mathcal{H} \setminus \{h\}$ encode successive Hydras in arbitrary battle then $A(n, H) \ (\rightarrow / =_{AC})^+ \ A(s(n), H')$

for some $n \in \mathcal{N}$

$$\begin{array}{l} \mathsf{A}(0,H_{1}) \to \mathsf{B}(0,\mathsf{D}(\mathsf{s}(0),H_{1})) =_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{D}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{C}(\mathsf{s}(0),\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{C}(0,\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{E}(\mathsf{h})\,|\,\mathsf{i}(\mathsf{h})))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ =_{\mathsf{AC}} \cdot \to \mathsf{B}(0,\mathsf{i}(\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{B}(0,\mathsf{i}(\mathsf{E}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \\ \to \mathsf{B}(0,\mathsf{E}(\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h})) \to \mathsf{A}(\mathsf{s}(0),\mathsf{i}(\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,\mathsf{h}\,|\,\mathsf{i}(\mathsf{h}))))\,|\,\mathsf{i}(\mathsf{h})\,|\,\mathsf{h}) \\ =_{\mathsf{AC}} \mathsf{A}(\mathsf{s}(0),H_{2}) \end{array}$$
Outline

- 1. Battle of Hercules and Hydra
- 2. Termination
- 3. Hydras modulo AC

4. Termination modulo AC

5. Conclusion

non-collapsing TRS over many-sorted signature is AC terminating

 \iff corresponding TRS over unsorted version of signature is AC terminating

non-collapsing TRS over many-sorted signature is AC terminating

 \iff corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

non-collapsing TRS over many-sorted signature is AC terminating

 \iff corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Definition

two sorts O and N for TRS $\,\mathbb{H}\,$ with

$$h: O \qquad i, E: O \rightarrow O \qquad |: O \times O \rightarrow O \qquad 0: N \qquad s: N \rightarrow N \qquad A, B, C, D: N \times O \rightarrow O$$

non-collapsing TRS over many-sorted signature is AC terminating

 \iff corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Definition

two sorts O and N for TRS $\,\mathbb{H}\,$ with

 $\label{eq:holescaled} \begin{array}{ccc} h:O & i, E:O \rightarrow O & \\ & |:O \times O \rightarrow O & \\ \hline O:N & s:N \rightarrow N & A, B, C, D:N \times O \rightarrow O \\ \end{array}$

Remark

TRS \mathbbm{H} is non-collapsing and each rewrite rule consists of well-typed terms of same sort

S-sorted \mathcal{F} -algebra $\mathcal{A} = (\{S_{\mathcal{A}}\}_{s \in S}, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ equipped with strict order > on union of all carrier sets is simple monotone if

every carrier set is non-empty

S-sorted \mathcal{F} -algebra $\mathcal{A} = (\{S_{\mathcal{A}}\}_{s \in S}, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ equipped with strict order > on union of all carrier sets is simple monotone if

every carrier set is non-empty

2 $(S_i)_{\mathcal{A}} \subseteq S_{\mathcal{A}}$ for all $f: S_1 \times \cdots \times S_n \to S$ in \mathcal{F}

S-sorted \mathcal{F} -algebra $\mathcal{A} = (\{S_{\mathcal{A}}\}_{s \in S}, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ equipped with strict order > on union of all carrier sets is simple monotone if

- **1** every carrier set is non-empty
- **2** $(S_i)_{\mathcal{A}} \subseteq S_{\mathcal{A}}$ for all $f: S_1 \times \cdots \times S_n \to S$ in \mathcal{F}
- \bigcirc every interpretation function f_A is simple and weakly monotone

S-sorted \mathcal{F} -algebra $\mathcal{A} = (\{S_{\mathcal{A}}\}_{S \in S}, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ equipped with strict order > on union of all carrier sets is simple monotone if

1 every carrier set is non-empty

$$2 (S_i)_{\mathcal{A}} \subseteq S_{\mathcal{A}} \text{ for all } f: S_1 \times \cdots \times S_n \to S \text{ in } \mathcal{F}$$

 \bigcirc every interpretation function f_A is simple and weakly monotone

Definition

algebra $(\mathcal{A}, >)$ is totally ordered if > is total order

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F} -algebra ($\mathcal{A}, >$)

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F} -algebra ($\mathcal{A}, >$) such that

1 $\mathcal{R} \subseteq >_{\mathcal{A}}$

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F} -algebra $(\mathcal{A}, >)$ such that

1 $\mathcal{R} \subseteq >_{\mathcal{A}}$ **2** $\mathsf{AC} \subseteq =_{\mathcal{A}}$

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F} -algebra $(\mathcal{A}, >)$ such that

1 $\mathcal{R} \subseteq >_{\mathcal{A}}$ **2** AC $\subseteq =_{\mathcal{A}}$ **3** $f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F} -algebra $(\mathcal{A}, >)$ such that

1 $\mathcal{R} \subseteq >_{\mathcal{A}}$ **2** AC $\subseteq =_{\mathcal{A}}$ **3** $f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (\mathcal{B}, \Box) with $\mathcal{B} = (\{S_{\mathcal{B}}\}_{S \in \mathcal{S}}, \{f_{\mathcal{B}}\}_{f \in \mathcal{F}})$

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F} -algebra $(\mathcal{A}, >)$ such that

1 $\mathcal{R} \subseteq >_{\mathcal{A}}$ **2** AC $\subseteq =_{\mathcal{A}}$ **3** $f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (\mathcal{B}, \Box) with $\mathcal{B} = (\{S_{\mathcal{B}}\}_{S \in \mathcal{S}}, \{f_{\mathcal{B}}\}_{f \in \mathcal{F}})$ as follows:

• $S_{\mathcal{B}} = \mathcal{M}(S_{\mathcal{A}})$

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F} -algebra $(\mathcal{A}, >)$ such that

1 $\mathcal{R} \subseteq >_{\mathcal{A}}$ **2** AC $\subseteq =_{\mathcal{A}}$ **3** $f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (\mathcal{B}, \Box) with $\mathcal{B} = (\{S_{\mathcal{B}}\}_{S \in \mathcal{S}}, \{f_{\mathcal{B}}\}_{f \in \mathcal{F}})$ as follows:

•
$$S_{\mathcal{B}} = \mathcal{M}(S_{\mathcal{A}})$$

• $f_{\mathcal{B}}(M_1, \dots, M_n) = \begin{cases} \widehat{f}_{\mathcal{A}}(M_1, \dots, M_n) \uplus \widehat{f}_{\mathcal{A}}(M_1, \dots, M_n) & \text{if } f_{\mathcal{A}} \text{ is strictly monotone} \\ \{f_{\mathcal{A}}(\max M_1, \dots, \max M_n)\} \uplus M_1 \uplus \dots \uplus M_n & \text{otherwise} \end{cases}$
with $\widehat{f}_{\mathcal{A}}(M_1, \dots, M_n) = \{f_{\mathcal{A}}(m_1, \dots, m_n) \mid (m_1, \dots, m_n) \in M_1 \times \dots \times M_n\}$

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F} -algebra $(\mathcal{A}, >)$ such that

1 $\mathcal{R} \subseteq >_{\mathcal{A}}$ **2** AC $\subseteq =_{\mathcal{A}}$ **3** $f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (\mathcal{B}, \Box) with $\mathcal{B} = (\{S_{\mathcal{B}}\}_{S \in \mathcal{S}}, \{f_{\mathcal{B}}\}_{f \in \mathcal{F}})$ as follows:

•
$$S_{\mathcal{B}} = \mathcal{M}(S_{\mathcal{A}})$$

• $f_{\mathcal{B}}(M_1, \dots, M_n) = \begin{cases} \widehat{f}_{\mathcal{A}}(M_1, \dots, M_n) \uplus \widehat{f}_{\mathcal{A}}(M_1, \dots, M_n) & \text{if } f_{\mathcal{A}} \text{ is strictly monotone} \\ \{f_{\mathcal{A}}(\max M_1, \dots, \max M_n)\} \uplus M_1 \uplus \dots \uplus M_n & \text{otherwise} \end{cases}$
with $\widehat{f}_{\mathcal{A}}(M_1, \dots, M_n) = \{f_{\mathcal{A}}(m_1, \dots, m_n) \mid (m_1, \dots, m_n) \in M_1 \times \dots \times M_n\}$
• $\Box = >_{\text{mul}}$

• interpretation functions $f_{\mathcal{B}}$ are strictly monotone

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \square_B has subterm property

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \square_B has subterm property
- $\square_{\mathcal{B}}$ is simplification order

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \square_B has subterm property
- $\ \ \square_{\mathcal{B}}$ is simplification order and thus well-founded

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \square_B has subterm property
- $\hfill\square_{\mathcal{B}}$ is simplification order and thus well-founded
- $\bullet \ >_{\mathcal{A}} \ \subseteq \ \sqsupset_{\mathcal{B}}$

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \square_B has subterm property
- $\hfill\square_{\mathcal{B}}$ is simplification order and thus well-founded
- $\bullet \ >_{\mathcal{A}} \ \subseteq \ \sqsupset_{\mathcal{B}}$
- AC $\subseteq =_{\mathcal{B}}$

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \square_B has subterm property
- $\ \ \square_{\mathcal{B}}$ is simplification order and thus well-founded
- $>_{\mathcal{A}} \subseteq \Box_{\mathcal{B}}$
- AC $\subseteq =_{\mathcal{B}}$
- $\bullet \ =_{\mathsf{AC}} \cdot \to \cdot =_{\mathsf{AC}} \subseteq =_{\mathcal{B}} \cdot \sqsupset_{\mathcal{B}} \cdot =_{\mathcal{B}} \subseteq \sqsupset_{\mathcal{B}}$

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \square_B has subterm property
- $\hfill\square_{\mathcal{B}}$ is simplification order and thus well-founded
- $>_{\mathcal{A}} \subseteq \Box_{\mathcal{B}}$
- AC $\subseteq =_{\mathcal{B}}$
- $\bullet \ =_{\mathsf{AC}} \cdot \to \cdot =_{\mathsf{AC}} \subseteq =_{\mathcal{B}} \cdot \sqsupset_{\mathcal{B}} \cdot =_{\mathcal{B}} \subseteq \sqsupset_{\mathcal{B}}$

Theorem

TRS \mathbb{H} is AC terminating

$\{\mathsf{O},\mathsf{N}\}\text{-}\mathsf{sorted}$ algebra $\mathcal A$

$\{\mathsf{O},\mathsf{N}\}\text{-}\mathsf{sorted}$ algebra $\mathcal A$ with

• carriers $O_{\mathcal{A}} = (\mathbb{O} \setminus \{0,1\}) \times \mathbb{N} \times \mathbb{N}$ and $N_{\mathcal{A}} = (\mathbb{N} \setminus \{0,1\}) \times \mathbb{N} \times \mathbb{N}$

$\{\mathsf{O},\mathsf{N}\}\text{-}\mathsf{sorted}$ algebra $\mathcal A$ with

- carriers $O_{\mathcal{A}} = (\mathbb{O} \setminus \{0,1\}) \times \mathbb{N} \times \mathbb{N}$ and $N_{\mathcal{A}} = (\mathbb{N} \setminus \{0,1\}) \times \mathbb{N} \times \mathbb{N}$
- lexicographic order $>_{\mathsf{O}} = (>_{\mathbb{O}}, >, >)_{\mathsf{lex}}$ on $\mathsf{O}_{\mathcal{A}}$

$\{\mathsf{O},\mathsf{N}\}\text{-}\mathsf{sorted}$ algebra $\mathcal A$ with

- carriers $O_{\mathcal{A}} = (\mathbb{O} \setminus \{0,1\}) \times \mathbb{N} \times \mathbb{N}$ and $N_{\mathcal{A}} = (\mathbb{N} \setminus \{0,1\}) \times \mathbb{N} \times \mathbb{N}$
- lexicographic order $>_{\mathsf{O}} = (>_{\mathbb{O}}, >, >)_{\mathsf{lex}}$ on $\mathsf{O}_{\mathcal{A}}$
- interpretation functions

$$\begin{aligned} \mathbf{0}_{\mathcal{A}} &= \mathbf{h}_{\mathcal{A}} = (2,0,0) \\ \mathbf{s}_{\mathcal{A}}((n_{1},n_{2},n_{3})) &= (n_{1}+2,0,0) \\ \mathbf{i}_{\mathcal{A}}((x_{1},x_{2},x_{3})) &= (\omega^{x_{1}},x_{2}+1,x_{3}+1) \\ (x_{1},x_{2},x_{3}) \mid_{\mathcal{A}} (y_{1},y_{2},y_{3}) &= (x_{1} \oplus y_{1},x_{2}+y_{2},x_{3}+y_{3}) \\ \mathbf{A}_{\mathcal{A}}((n_{1},n_{2},n_{3}),(x_{1},x_{2},x_{3})) &= (n_{1}+x_{1},n_{2}+2x_{2}+2,0) \\ \mathbf{B}_{\mathcal{A}}((n_{1},n_{2},n_{3}),(x_{1},x_{2},x_{3})) &= (2+n_{1}+x_{1},n_{2}+2x_{2}+1,0) \\ \mathbf{C}_{\mathcal{A}}((n_{1},n_{2},n_{3}),(x_{1},x_{2},x_{3})) &= (x_{1}\cdot n_{1},0,0) \\ \mathbf{D}_{\mathcal{A}}((n_{1},n_{2},n_{3}),(x_{1},x_{2},x_{3})) &= (n_{1}+x_{1},n_{2}+x_{2},n_{2}+n_{3}+x_{2}+x_{3}) \\ \mathbf{E}_{\mathcal{A}}((x_{1},x_{2},x_{3})) &= (x_{1},x_{2}+1,0) \end{aligned}$$

$\{O,N\}$ -sorted algebra $\mathcal A$ with

- carriers $O_{\mathcal{A}} = (\mathbb{O} \setminus \{0,1\}) \times \mathbb{N} \times \mathbb{N}$ and $N_{\mathcal{A}} = (\mathbb{N} \setminus \{0,1\}) \times \mathbb{N} \times \mathbb{N}$
- lexicographic order $>_{\mathsf{O}} = (>_{\mathbb{O}}, >, >)_{\mathsf{lex}}$ on $\mathsf{O}_{\mathcal{A}}$
- interpretation functions

 $0_A = h_A = (2, 0, 0)$ $s_{4}((n_{1}, n_{2}, n_{3})) = (n_{1} + 2, 0, 0)$ $i_{4}((x_{1}, x_{2}, x_{3})) = (\omega^{x_{1}}, x_{2} + 1, x_{3} + 1)$ $(x_1, x_2, x_3) \mid_A (y_1, y_2, y_3) = (x_1 \oplus y_1, x_2 + y_2, x_3 + y_3)$ $A_{A}((n_{1}, n_{2}, n_{3}), (x_{1}, x_{2}, x_{3})) = (n_{1} + x_{1}, n_{2} + 2x_{2} + 2, 0)$ $B_4((n_1, n_2, n_3), (x_1, x_2, x_3)) = (2 + n_1 + x_1, n_2 + 2x_2 + 1, 0)$ $C_{4}((n_{1}, n_{2}, n_{3}), (x_{1}, x_{2}, x_{3})) = (x_{1} \cdot n_{1}, 0, 0)$ $D_{\mathcal{A}}((n_1, n_2, n_3), (x_1, x_2, x_3)) = (n_1 + x_1, n_2 + x_2, n_2 + n_3 + x_2 + x_3)$ $E_A((x_1, x_2, x_3)) = (x_1, x_2 + 1, 0)$

• $|_{\mathcal{A}}$ is strictly monotone

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {}^{>_{\mathcal{A}}}$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {}^{>_{\mathcal{A}}}$

 $A(n,i(h)) \rightarrow h$

translates to

$$(\omega^2, -, -) >_0 (2, -, -)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $A(n, i(h | x)) \rightarrow A(s(n), i(x))$

translates to

$$(\omega^{x_1+2}, -, -) >_0 (\omega^{x_1}, -, -)$$
- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $\mathsf{A}(n,\mathsf{i}(x)) \ \rightarrow \ \mathsf{B}(n,\mathsf{D}(\mathsf{s}(n),\mathsf{i}(x)))$

$$(\omega^{x_1}, n_2 + 2x_2 + 4, -) >_0 (\omega^{x_1}, n_2 + 2x_2 + 3, -)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $\mathsf{D}(n,\mathsf{i}(\mathsf{i}(x))) \rightarrow \mathsf{i}(\mathsf{D}(n,\mathsf{i}(x)))$

$$(\omega^{\omega^{x_1}}, n_2+x_2+2, n_2+n_3+x_2+x_3+4) >_{O} (\omega^{\omega^{x_1}}, n_2+x_2+2, n_2+n_3+x_2+x_3+3)$$

- |_A is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $\mathsf{D}(n,\mathsf{i}(\mathsf{i}(x)\,|\,y)) \;\rightarrow\; \mathsf{i}(\mathsf{D}(n,\mathsf{i}(x))\,|\,y)$

$$(\omega^{\omega^{x_1}\oplus y_1}, n_2+x_2+y_2+2, n_2+n_3+x_2+x_3+y_2+y_3+4) >_0 (\omega^{\omega^{x_1}\oplus y_1}, n_2+x_2+y_2+2, n_2+n_3+x_2+x_3+y_3+3)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $\mathsf{D}(n,\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,x)\,|\,y)) \;\rightarrow\; \mathsf{i}(\mathsf{C}(n,\mathsf{i}(x))\,|\,y)$

$$(\omega^{\omega^{x_1+2}\oplus y_1}, -, -) >_0 (\omega^{\omega^{x_1} \cdot n_1 \oplus y_1}, -, -)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $\mathsf{D}(n,\mathsf{i}(\mathsf{i}(\mathsf{h}\,|\,x))) \ \rightarrow \ \mathsf{i}(\mathsf{C}(n,\mathsf{i}(x)))$

$$(\omega^{\omega^{x_1+2}}, -, -) >_0 (\omega^{\omega^{x_1} \cdot n_1}, -, -)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $\mathsf{D}(n,\mathsf{i}(\mathsf{i}(\mathsf{h})\,|\,\boldsymbol{y})) \;\rightarrow\; \mathsf{i}(\mathsf{C}(n,\mathsf{h})\,|\,\boldsymbol{y})$

$$(\omega^{\omega^2 \oplus y_1}, -, -) >_0 (\omega^{y_1 + 2n_1}, -, -)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $D(n, i(i(h))) \rightarrow i(C(n, h))$

$$(\omega^{\omega^2}, -, -) >_0 (\omega^{2n_1}, -, -)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $C(\mathbf{0}, \mathbf{x}) \rightarrow E(\mathbf{x})$

$$(x_1 \cdot 2, -, -) >_O (x_1, -, -)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $C(s(n), x) \rightarrow x | C(n, x)$

$$(x_1 \cdot (n_1 + 2), -, -) >_0 (x_1 \cdot (n_1 + 1), -, -)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $i(E(x)|y) \rightarrow E(i(x|y))$

$$(\omega^{x_1 \oplus y_1}, x_2 + y_2 + 2, y_3 + 1) >_0 (\omega^{x_1 \oplus y_1}, x_2 + y_2 + 2, 0)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $i(E(x)) \rightarrow E(i(x))$

$$(\omega^{x_1}, x_2 + 2, 1) >_0 (\omega^{x_1}, x_2 + 2, 0)$$

- $|_{\mathcal{A}}$ is strictly monotone
- $\bullet \ \mathsf{AC} \subseteq =_\mathcal{A}$
- all interpretation functions are simple and monotone
- $\bullet \ \mathbb{H} \subseteq {} >_{\mathcal{A}}$

 $B(n, E(x)) \rightarrow A(s(n), x)$

$$(2 + n_1 + x_1, n_2 + 2x_2 + 3, -) >_0 (2 + n_1 + x_1, 2x_2 + 2, -)$$

Outline

- 1. Battle of Hercules and Hydra
- 2. Termination
- 3. Hydras modulo AC
- 4. Termination modulo AC
- 5. Conclusion

• faithful encoding of Battle of Hercules and Hydra as TRS modulo AC

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination
- many-sortedness is essential for termination proof of battle

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination
- many-sortedness is essential for termination proof of battle
- termination of \mathbb{H} , AC (as opposed to \mathbb{H}/AC) is sufficient

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination
- many-sortedness is essential for termination proof of battle
- termination of \mathbb{H} , AC (as opposed to \mathbb{H}/AC) is sufficient
- Hydras are not ordinals

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination
- many-sortedness is essential for termination proof of battle
- termination of \mathbb{H} , AC (as opposed to \mathbb{H}/AC) is sufficient
- Hydras are not ordinals

big thanks to

Hans Zantema

for many important contributations to (termination techniques for) term rewriting

Postdoc Position

- 3-year project position in Innsbruck
- FWF/JSPS project ARI: Automation of Rewriting Infrastucture
- https://ari-informatik.uibk.ac.at/position.php
- application deadline: June 15, 2022