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Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple
heads. Whenever Hercules in his fight chops off a head, more and more
new heads can grow instead, since the beast gets increasingly angry.
Hydra dies and Hercules wins if there are no heads left.

Here we model
a Hydra as an unordered tree. If Hercules cuts off a leaf l that has a
grandparent g, the branch from g to the parent of l gets multiplied, with
the number of copies depending on the number of decapitations so far.

✂

1

✂

2

✂

3

✂

4 5

Can Hercules win the battle?
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Battle of Hercules and Hydra

• termination is not provable in Peano arithmetic (Kirby and Paris 1982)

• variations are described in

• Buchholz 1987

• Hamano and Okada 1997

• Beklemishev 2006

• Fleischer 2009

TRS Encodings

• Dershowitz and Jouannaud 1990

• Touzet 1998

• Lepper 2004

• Dershowitz and Moser 2007

• Moser 2009

• Beklemishev and Onoprienko 2015
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Definition (Touzet 1998)

TRS T

• signature 0 (constant) • 8 ◦ (unary) c1 H (binary) c2 (ternary)

• rewrite rules

8 ◦ x → ◦ 8 x H(0, x) → ◦ x
• 8 x → 8 • • x • H(H(0, y), z) → c1(y, z)

◦ x → • 8 x • H(H(H(0, x), y), z) → c2(x, y, z)

• x → x • c1(x, y) → c1(x,H(x, y))

c1(y, z) → ◦ z • c2(x, y, z) → c2(x,H(x, y), z)

c2(x, y, z) → ◦ H(y, z)

Remark

TRS T models specific strategy for Hercules to battle Hydras up to height 4
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Remark

TRS T models specific strategy for Hercules to battle Hydras up to height 4

✂ not possible✂

1

2

• 8 H(H(H(0,0),H(H(0,0),0)),0) →+ • 88 H(H(0,H(0,H(H(0,0),0)),0))
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Remark

TRS T models specific strategy for Hercules to battle Hydras up to height 4

✂ not possible
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1 2
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Outline

1. Battle of Hercules and Hydra

2. Termination

3. Hydras modulo AC

4. Termination modulo AC

5. Conclusion
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Definitions

• well-founded monotone F -algebra (A, >) consists of non-empty algebra A = (A, {fA}f ∈F )
with well-founded order > on A such that every fA is strictly monotone in all coordinates:

fA(a1, . . . , ai, . . . , an) > fA(a1, . . . , b, . . . , an)

for all a1, . . . , an,b ∈ A and i ∈ {1, . . . , n} with ai > b

• relation >A on terms: s >A t if [α]A(s) > [α]A(t) for all assignments α

Lemma

>A is reduction order for every well-founded monotone algebra (A, >)

Theorem (Lankford 1979; Zantema 1994)

TRS R is terminating ⇐⇒ R ⊆ >A for well-founded monotone algebra (A, >)
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Definition

algebra (A, >) is simple monotone if every interpretation function fA is

1 weakly monotone

fA(a1, . . . , ai, . . . , an) ⩾ fA(a1, . . . , b, . . . , an)

for all 1 ⩽ i ⩽ n and a1, . . . , an,b ∈ A with ai > b

2 simple

fA(a1, . . . , ai, . . . , an) ⩾ ai

for all 1 ⩽ i ⩽ n

Remark

>A need not be reduction order for well-founded simple monotone algebra (A, >)
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Theorem (Touzet 1998; Zantema 2001)

TRS R over finite signature is terminating if R ⊆ >A for simple monotone algebra (A, >)

Theorem (Touzet 1998)

TRS T is terminating

Remarks

• termination proof uses ordinals

• addition on ordinals is weakly monotone but not strictly monotone

2 + ω = 1 + ω

• natural addition on ordinals is strictly monotone

2 ⊕ ω

= ω + 2

>

ω + 1 =

1 ⊕ ω
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Example

TRS R
f(g(x)) → g(f(f(x)))

is terminating

• algebra (A, >) with carrier O (set of ordinals below ϵ0) and interpretations

fA(x) = x+ 1 gA(x) = x+ ω

• (A, >) is weakly monotone and simple

• R ⊆ >A

fA(gA(x)) = x+ ω + 1

> x+ ω =

x+ 2 + ω = gA(fA(fA(x)))
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Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

x | y = y | x (x | y) | z = x | (y | z)

Example

H1

H2 H3

i(i(h) | i(i(i(h) | i(h))) |h) i(i(h) | i(i(i(h) |h |h)) |h) i(i(h) | i(i(i(h),h) | i(i(h),h) | i(i(h),h)) |h)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 14/26



Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

x | y = y | x (x | y) | z = x | (y | z)

Example

H1

H2 H3

i(i(h) | i(i(i(h) | i(h))) |h) i(i(h) | i(i(i(h) |h |h)) |h) i(i(h) | i(i(i(h),h) | i(i(h),h) | i(i(h),h)) |h)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 14/26



Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

x | y = y | x (x | y) | z = x | (y | z)

Example

H1

H2 H3

i(i(h) | i(i(i(h) | i(h))) |h)

i(i(h) | i(i(i(h) |h |h)) |h) i(i(h) | i(i(i(h),h) | i(i(h),h) | i(i(h),h)) |h)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 14/26



Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

x | y = y | x (x | y) | z = x | (y | z)

Example

H1 H2

H3

i(i(h) | i(i(i(h) | i(h))) |h) i(i(h) | i(i(i(h) |h |h)) |h)

i(i(h) | i(i(i(h),h) | i(i(h),h) | i(i(h),h)) |h)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 14/26



Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

x | y = y | x (x | y) | z = x | (y | z)

Example

H1 H2 H3

i(i(h) | i(i(i(h) | i(h))) |h) i(i(h) | i(i(i(h) |h |h)) |h) i(i(h) | i(i(i(h),h) | i(i(h),h) | i(i(h),h)) |h)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 14/26



H = T ({h, i, |})

N = T ({0, s})

Definition

TRS H
• signature h i |

0 (constant) s (unary) A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h

D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x))

D(n, i(i(x) | y)) → i(D(n, i(x)) | y)

A(n, i(x)) → B(n,D(s(n), i(x)))

D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)
C(0, x) → E(x) D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x) D(n, i(i(h) | y)) → i(C(n,h) | y)
i(E(x) | y) → E(i(x | y)) D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x)) B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



H = T ({h, i, |}) N = T ({0, s})

Definition

TRS H
• signature h i | 0 (constant) s (unary)

A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h

D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x))

D(n, i(i(x) | y)) → i(D(n, i(x)) | y)

A(n, i(x)) → B(n,D(s(n), i(x)))

D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)
C(0, x) → E(x) D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x) D(n, i(i(h) | y)) → i(C(n,h) | y)
i(E(x) | y) → E(i(x | y)) D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x)) B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



H = T ({h, i, |}) N = T ({0, s})

Definition

TRS H
• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h

D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x))

D(n, i(i(x) | y)) → i(D(n, i(x)) | y)

A(n, i(x)) → B(n,D(s(n), i(x)))

D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)
C(0, x) → E(x) D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x) D(n, i(i(h) | y)) → i(C(n,h) | y)
i(E(x) | y) → E(i(x | y)) D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x)) B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



H = T ({h, i, |}) N = T ({0, s})

Definition

TRS H
• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h

D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x))

D(n, i(i(x) | y)) → i(D(n, i(x)) | y)

A(n, i(x)) → B(n,D(s(n), i(x)))

D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)
C(0, x) → E(x) D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x) D(n, i(i(h) | y)) → i(C(n,h) | y)
i(E(x) | y) → E(i(x | y)) D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x)) B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



H = T ({h, i, |}) N = T ({0, s})

Definition

TRS H
• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x)) D(n, i(i(x) | y)) → i(D(n, i(x)) | y)
A(n, i(x)) → B(n,D(s(n), i(x)))

D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)
C(0, x) → E(x) D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x) D(n, i(i(h) | y)) → i(C(n,h) | y)
i(E(x) | y) → E(i(x | y)) D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x)) B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



H = T ({h, i, |}) N = T ({0, s})

Definition

TRS H
• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x)) D(n, i(i(x) | y)) → i(D(n, i(x)) | y)
A(n, i(x)) → B(n,D(s(n), i(x))) D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)

C(0, x) → E(x)

D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x)

D(n, i(i(h) | y)) → i(C(n,h) | y)

i(E(x) | y) → E(i(x | y))

D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x)) B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



H = T ({h, i, |}) N = T ({0, s})

Definition

TRS H
• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x)) D(n, i(i(x) | y)) → i(D(n, i(x)) | y)
A(n, i(x)) → B(n,D(s(n), i(x))) D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)

C(0, x) → E(x) D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x) D(n, i(i(h) | y)) → i(C(n,h) | y)

i(E(x) | y) → E(i(x | y))

D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x)) B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



H = T ({h, i, |}) N = T ({0, s})

Definition

TRS H
• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x)) D(n, i(i(x) | y)) → i(D(n, i(x)) | y)
A(n, i(x)) → B(n,D(s(n), i(x))) D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)

C(0, x) → E(x) D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x) D(n, i(i(h) | y)) → i(C(n,h) | y)
i(E(x) | y) → E(i(x | y)) D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x))

B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



H = T ({h, i, |}) N = T ({0, s})

Definition

TRS H
• signature h i | 0 (constant) s (unary) A B C D (binary) E (unary)

• rewrite rules

A(n, i(h)) → h D(n, i(i(x))) → i(D(n, i(x)))

A(n, i(h | x)) → A(s(n), i(x)) D(n, i(i(x) | y)) → i(D(n, i(x)) | y)
A(n, i(x)) → B(n,D(s(n), i(x))) D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)

C(0, x) → E(x) D(n, i(i(h | x))) → i(C(n, i(x)))

C(s(n), x) → x |C(n, x) D(n, i(i(h) | y)) → i(C(n,h) | y)
i(E(x) | y) → E(i(x | y)) D(n, i(i(h))) → i(C(n,h))

i(E(x)) → E(i(x)) B(n,E(x)) → A(s(n), x)

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 3. Hydras modulo AC 15/26



Theorem

if H,H′ ∈ H \ {h} encode successive Hydras in arbitrary battle then

A(n,H) (→ / =AC)
+ A(s(n),H′)

for some n ∈ N

Example

A(0,H1)

→ B(0,D(s(0),H1)) =AC · → B(0, i(D(s(0), i(i(i(h) | i(h)))) | i(h) |h))
→ B(0, i(i(D(s(0), i(i(h) | i(h)))) | i(h) |h)) → B(0, i(i(i(C(s(0),h) | i(h))) | i(h) |h))
→ B(0, i(i(i(h |C(0,h) | i(h))) | i(h) |h)) → B(0, i(i(i(h |E(h) | i(h))) | i(h) |h))

=AC · → B(0, i(i(E(i(h |h | i(h)))) | i(h) |h)) → B(0, i(E(i(i(h |h | i(h)))) | i(h) |h))
→ B(0,E(i(i(i(h |h | i(h)))) | i(h) |h)) → A(s(0), i(i(i(h |h | i(h)))) | i(h) |h)

=AC A(s(0),H2)
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Theorem (Middeldorp & Ohsaki 1997)

non-collapsing TRS over many-sorted signature is AC terminating

⇐⇒ corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Definition

two sorts O and N for TRS H with

h : O i,E : O → O | : O × O → O 0 : N s : N → N A,B,C,D : N × O → O

Remark

TRS H is non-collapsing and each rewrite rule consists of well-typed terms of same sort

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 4. Termination modulo AC 18/26



Theorem (Middeldorp & Ohsaki 1997)

non-collapsing TRS over many-sorted signature is AC terminating

⇐⇒ corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Definition

two sorts O and N for TRS H with

h : O i,E : O → O | : O × O → O 0 : N s : N → N A,B,C,D : N × O → O

Remark

TRS H is non-collapsing and each rewrite rule consists of well-typed terms of same sort

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 4. Termination modulo AC 18/26



Theorem (Middeldorp & Ohsaki 1997)

non-collapsing TRS over many-sorted signature is AC terminating

⇐⇒ corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Definition

two sorts O and N for TRS H with

h : O i,E : O → O | : O × O → O 0 : N s : N → N A,B,C,D : N × O → O

Remark

TRS H is non-collapsing and each rewrite rule consists of well-typed terms of same sort

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 4. Termination modulo AC 18/26



Theorem (Middeldorp & Ohsaki 1997)

non-collapsing TRS over many-sorted signature is AC terminating

⇐⇒ corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Definition

two sorts O and N for TRS H with

h : O i,E : O → O | : O × O → O 0 : N s : N → N A,B,C,D : N × O → O

Remark

TRS H is non-collapsing and each rewrite rule consists of well-typed terms of same sort

TeReSe 2022 8 June 2022 Nijmegen (hybrid) 4. Termination modulo AC 18/26



Definition

S-sorted F -algebra A = ({SA}S∈S , {fA} f ∈F ) equipped with strict order > on union of all
carrier sets is simple monotone if

1 every carrier set is non-empty

2 (Si)A ⊆ SA for all f : S1 × · · · × Sn → S in F

3 every interpretation function fA is simple and weakly monotone

Definition

algebra (A, >) is totally ordered if > is total order
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Theorem

TRS R over finite many-sorted signature F is AC terminating if there exists totally ordered
simple monotone many-sorted F -algebra (A, >)

such that

1 R ⊆ >A

2 AC ⊆ =A 3 fA is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (B,⊐) with B = ({SB }S∈S , {fB } f ∈F ) as follows:

• SB = M(SA)

• fB(M1, . . . ,Mn) =

{
f̂A(M1, . . . ,Mn) ⊎ f̂A(M1, . . . ,Mn) if fA is strictly monotone

{fA(maxM1, . . . , maxMn)} ⊎M1 ⊎ · · · ⊎Mn otherwise

with f̂A(M1, . . . ,Mn) = {fA(m1, . . . ,mn) | (m1, . . . ,mn) ∈ M1 × · · · ×Mn}
• ⊐ = >mul
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Proof sketch (cont’d)

• interpretation functions fB are strictly monotone

• ⊐B has subterm property

• ⊐B is simplification order

and thus well-founded

• >A ⊆ ⊐B

• AC ⊆ =B

• =AC · → · =AC ⊆ =B · ⊐B · =B ⊆ ⊐B

Theorem

TRS H is AC terminating
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Proof sketch

{O,N}–sorted algebra A

with

• carriers OA = (O \ {0,1})× N× N and NA = (N \ {0,1})× N× N

• lexicographic order >O = (>O, >,>)lex on OA

• interpretation functions

0A = hA = (2,0,0)

sA((n1,n2,n3)) = (n1 + 2,0,0)

iA((x1, x2, x3)) = (ω x1 , x2 + 1, x3 + 1)

(x1, x2, x3) |A (y1, y2, y3) = (x1 ⊕ y1, x2 + y2, x3 + y3)

AA((n1,n2,n3), (x1, x2, x3)) = (n1 + x1,n2 + 2x2 + 2,0)

BA((n1,n2,n3), (x1, x2, x3)) = (2 + n1 + x1,n2 + 2x2 + 1,0)

CA((n1,n2,n3), (x1, x2, x3)) = (x1 · n1,0,0)

DA((n1,n2,n3), (x1, x2, x3)) = (n1 + x1,n2 + x2,n2 + n3 + x2 + x3)

EA((x1, x2, x3)) = (x1, x2 + 1,0)
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EA((x1, x2, x3)) = (x1, x2 + 1,0)
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Proof sketch

{O,N}–sorted algebra A with

• carriers OA = (O \ {0,1})× N× N and NA = (N \ {0,1})× N× N
• lexicographic order >O = (>O, >,>)lex on OA

• interpretation functions

0A = hA = (2,0,0)

sA((n1,n2,n3)) = (n1 + 2,0,0)

iA((x1, x2, x3)) = (ω x1 , x2 + 1, x3 + 1)

(x1, x2, x3) |A (y1, y2, y3) = (x1 ⊕ y1, x2 + y2, x3 + y3)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

A(n, i(h)) → h

translates to

(ω 2,— ,—) >O (2,— ,—)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

A(n, i(h | x)) → A(s(n), i(x))

translates to

(ω x1+2,— ,—) >O (ω x1 ,— ,—)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

A(n, i(x)) → B(n,D(s(n), i(x)))

translates to

(ω x1 ,n2 + 2x2 + 4,—) >O (ω x1 ,n2 + 2x2 + 3,—)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

D(n, i(i(x))) → i(D(n, i(x)))

translates to

(ωω x1
, n2+x2+2, n2+n3+x2+x3+4) >O (ωω x1

, n2+x2+2, n2+n3+x2+x3+3)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

D(n, i(i(x) | y)) → i(D(n, i(x)) | y)

translates to
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

D(n, i(i(h | x) | y)) → i(C(n, i(x)) | y)

translates to

(ωω x1+2 ⊕y1 ,— ,—) >O (ωω x1 ·n1 ⊕y1 ,— ,—)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

D(n, i(i(h) | y)) → i(C(n,h) | y)

translates to

(ωω 2 ⊕y1 ,— ,—) >O (ω y1 +2n1 ,— ,—)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

D(n, i(i(h))) → i(C(n,h))

translates to

(ωω 2
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

C(0, x) → E(x)

translates to

(x1 · 2,— ,—) >O (x1,— ,—)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

C(s(n), x) → x |C(n, x)

translates to

(x1 · (n1 + 2),— ,—) >O (x1 · (n1 + 1),— ,—)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

i(E(x) | y) → E(i(x | y))

translates to

(ω x1 ⊕y1 , x2 + y2 + 2, y3 + 1) >O (ω x1 ⊕y1 , x2 + y2 + 2,0)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

i(E(x)) → E(i(x))

translates to

(ω x1 , x2 + 2,1) >O (ω x1 , x2 + 2,0)
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Proof sketch

• |A is strictly monotone

• AC ⊆ =A

• all interpretation functions are simple and monotone

• H ⊆ >A

B(n,E(x)) → A(s(n), x)

translates to

(2 + n1 + x1,n2 + 2x2 + 3,—) >O (2 + n1 + x1,2x2 + 2,—)
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Outline

1. Battle of Hercules and Hydra

2. Termination

3. Hydras modulo AC

4. Termination modulo AC

5. Conclusion
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Concluding Remarks

• faithful encoding of Battle of Hercules and Hydra as TRS modulo AC

• new semantic method for AC termination

• many-sortedness is essential for termination proof of battle

• termination of H, AC (as opposed to H/AC) is sufficient

• Hydras are not ordinals

big thanks to

Hans Zantema

for many important contributations to (termination techniques for) term rewriting
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Postdoc Position

• 3-year project position in Innsbruck

• FWF / JSPS project ARI: Automation of Rewriting Infrastucture

• https://ari-informatik.uibk.ac.at/position.php

• application deadline: June 15, 2022
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