

Hydra Battles and AC Termination

Nao Hirokawa

JAIST

Aart Middeldorp

University of Innsbruck

Outline

1. Battle of Hercules and Hydra
2. Termination
3. Hydras modulo AC
4. Termination modulo AC
5. Conclusion

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left.

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of $/$ gets multiplied, with the number of copies depending on the number of decapitations so far.

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of $/$ gets multiplied, with the number of copies depending on the number of decapitations so far.

1

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of $/$ gets multiplied, with the number of copies depending on the number of decapitations so far.

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf $/$ that has a grandparent g, the branch from g to the parent of I gets multiplied, with the number of copies depending on the number of decapitations so far.

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of $/$ gets multiplied, with the number of copies depending on the number of decapitations so far.

1

2

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of I gets multiplied, with the number of copies depending on the number of decapitations so far.

1

2

3

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of $/$ gets multiplied, with the number of copies depending on the number of decapitations so far.

1

2

3

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of $/$ gets multiplied, with the number of copies depending on the number of decapitations so far.

1

2

3

4

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of I gets multiplied, with the number of copies depending on the number of decapitations so far.

1

2

3

4

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of I gets multiplied, with the number of copies depending on the number of decapitations so far.

1

2

3

4

5

Battle of Hercules and Hydra (Kirby and Paris 1982)

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can grow instead, since the beast gets increasingly angry. Hydra dies and Hercules wins if there are no heads left. Here we model a Hydra as an unordered tree. If Hercules cuts off a leaf I that has a grandparent g, the branch from g to the parent of $/$ gets multiplied, with the number of copies depending on the number of decapitations so far.

1

2

3

4

5

Can Hercules win the battle?

Battle of Hercules and Hydra

- termination is not provable in Peano arithmetic (Kirby and Paris 1982)

Battle of Hercules and Hydra

- termination is not provable in Peano arithmetic (Kirby and Paris 1982)
- variations are described in
- Buchholz 1987
- Hamano and Okada 1997
- Beklemishev 2006
- Fleischer 2009

Battle of Hercules and Hydra

- termination is not provable in Peano arithmetic (Kirby and Paris 1982)
- variations are described in
- Buchholz 1987
- Hamano and Okada 1997
- Beklemishev 2006
- Fleischer 2009

TRS Encodings

- Dershowitz and Jouannaud 1990
- Touzet 1998
- Lepper 2004
- Dershowitz and Moser 2007
- Moser 2009
- Beklemishev and Onoprienko 2015

Battle of Hercules and Hydra

- termination is not provable in Peano arithmetic (Kirby and Paris 1982)
- variations are described in
- Buchholz 1987
- Hamano and Okada 1997
- Beklemishev 2006
- Fleischer 2009

TRS Encodings

- Dershowitz and Jouannaud 1990
- Touzet 1998
- Lepper 2004
- Dershowitz and Moser 2007
- Moser 2009
- Beklemishev and Onoprienko 2015

Definition (Touzet 1998)

TRS \mathbb{T}

- signature 0 (constant) • $\quad \circ$ (unary) $c^{1} H$ (binary) c^{2} (ternary)
- rewrite rules

$$
\begin{aligned}
\rrbracket \circ x & \rightarrow \circ \square x \\
\bullet \rrbracket x & \rightarrow \rrbracket \bullet \bullet x \\
\circ x & \rightarrow \bullet \rrbracket x \\
\bullet x & \rightarrow x \\
\mathrm{c}^{1}(y, z) & \rightarrow \circ z \\
\mathrm{c}^{2}(x, y, z) & \rightarrow \circ \mathrm{H}(y, z)
\end{aligned}
$$

Definition (Touzet 1998)

TRS \mathbb{T}

- signature 0 (constant) •] \circ (unary) $c^{1} H$ (binary) c^{2} (ternary)
- rewrite rules

$$
\begin{aligned}
\square \circ x & \rightarrow \circ \llbracket x \\
\bullet \| x & \rightarrow \rrbracket \bullet \bullet x \\
\circ x & \rightarrow \bullet \| x \\
\bullet x & \rightarrow x \\
\mathrm{c}^{1}(y, z) & \rightarrow \circ z \\
\mathrm{c}^{2}(x, y, z) & \rightarrow \circ \mathrm{H}(y, z)
\end{aligned}
$$

$$
\mathrm{H}(0, x) \rightarrow \circ x
$$

- $\mathrm{H}(\mathrm{H}(0, y), z) \rightarrow \mathrm{c}^{1}(y, z)$
- $\mathrm{H}(\mathrm{H}(\mathrm{H}(0, x), y), z) \rightarrow \mathrm{c}^{2}(x, y, z)$
- $\mathrm{c}^{1}(x, y) \rightarrow \mathrm{c}^{1}(x, \mathrm{H}(x, y))$
- $\mathrm{c}^{2}(x, y, z) \rightarrow \mathrm{c}^{2}(x, \mathrm{H}(x, y), z)$

Remark

TRS \mathbb{T} models specific strategy for Hercules to battle Hydras up to height 4

Definition (Touzet 1998)

TRS \mathbb{T}

- signature 0 (constant) •] \circ (unary) $c^{1} H$ (binary) c^{2} (ternary)
- rewrite rules

$$
\begin{aligned}
\square \circ x & \rightarrow \circ \llbracket x \\
\bullet \| x & \rightarrow \rrbracket \bullet \bullet x \\
\circ x & \rightarrow \bullet \| x \\
\bullet x & \rightarrow x \\
\mathrm{c}^{1}(y, z) & \rightarrow \circ z \\
\mathrm{c}^{2}(x, y, z) & \rightarrow \circ \mathrm{H}(y, z)
\end{aligned}
$$

$$
\mathrm{H}(0, x) \rightarrow \circ x
$$

$$
\text { - } \mathrm{H}(\mathrm{H}(0, y), z) \rightarrow \mathrm{c}^{1}(y, z)
$$

- $\mathrm{H}(\mathrm{H}(\mathrm{H}(0, x), y), z) \rightarrow \mathrm{c}^{2}(x, y, z)$
- $\mathrm{c}^{1}(x, y) \rightarrow \mathrm{c}^{1}(x, \mathrm{H}(x, y))$
- $\mathrm{c}^{2}(x, y, z) \rightarrow \mathrm{c}^{2}(x, \mathrm{H}(x, y), z)$

Remark

TRS \mathbb{T} models specific strategy for Hercules to battle Hydras up to height 4

Remark

TRS \mathbb{T} models specific strategy for Hercules to battle Hydras up to height 4

1

Remark

TRS \mathbb{T} models specific strategy for Hercules to battle Hydras up to height 4

1

Remark

TRS \mathbb{T} models specific strategy for Hercules to battle Hydras up to height 4

1

Remark

TRS \mathbb{T} models specific strategy for Hercules to battle Hydras up to height 4

Outline

1. Battle of Hercules and Hydra

2. Termination

3. Hydras modulo AC

4. Termination modulo AC
5. Conclusion

Definitions

- well-founded monotone \mathcal{F}-algebra $(\mathcal{A},>)$ consists of non-empty algebra $\mathcal{A}=\left(A,\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ with well-founded order $>$ on A such that every $f_{\mathcal{A}}$ is strictly monotone in all coordinates:

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)>f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $a_{1}, \ldots, a_{n}, b \in A$ and $i \in\{1, \ldots, n\}$ with $a_{i}>b$

Definitions

- well-founded monotone \mathcal{F}-algebra $(\mathcal{A},>)$ consists of non-empty algebra $\mathcal{A}=\left(A,\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ with well-founded order $>$ on A such that every $f_{\mathcal{A}}$ is strictly monotone in all coordinates:

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)>f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $a_{1}, \ldots, a_{n}, b \in A$ and $i \in\{1, \ldots, n\}$ with $a_{i}>b$

- relation $>_{\mathcal{A}}$ on terms: $s>_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s)>[\alpha]_{\mathcal{A}}(t)$ for all assignments α

Definitions

- well-founded monotone \mathcal{F}-algebra $(\mathcal{A},>)$ consists of non-empty algebra $\mathcal{A}=\left(A,\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ with well-founded order $>$ on A such that every $f_{\mathcal{A}}$ is strictly monotone in all coordinates:

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)>f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $a_{1}, \ldots, a_{n}, b \in A$ and $i \in\{1, \ldots, n\}$ with $a_{i}>b$

- relation $>_{\mathcal{A}}$ on terms: $s>_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s)>[\alpha]_{\mathcal{A}}(t)$ for all assignments α

Lemma

$>_{\mathcal{A}}$ is reduction order for every well-founded monotone algebra $(\mathcal{A},>)$

Definitions

- well-founded monotone \mathcal{F}-algebra $(\mathcal{A},>)$ consists of non-empty algebra $\mathcal{A}=\left(\mathcal{A},\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ with well-founded order $>$ on A such that every $f_{\mathcal{A}}$ is strictly monotone in all coordinates:

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)>f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $a_{1}, \ldots, a_{n}, b \in A$ and $i \in\{1, \ldots, n\}$ with $a_{i}>b$

- relation $>_{\mathcal{A}}$ on terms: $s>_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s)>[\alpha]_{\mathcal{A}}(t)$ for all assignments α

Lemma

$>_{\mathcal{A}}$ is reduction order for every well-founded monotone algebra $(\mathcal{A},>)$

Theorem (Lankford 1979; Zantema 1994)

TRS \mathcal{R} is terminating $\Longleftrightarrow \mathcal{R} \subseteq>_{\mathcal{A}}$ for well-founded monotone algebra $(\mathcal{A},>)$

Definition

algebra $(\mathcal{A},>)$ is simple monotone if every interpretation function $f_{\mathcal{A}}$ is
(1) weakly monotone

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \geqslant f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $1 \leqslant i \leqslant n$ and $a_{1}, \ldots, a_{n}, b \in A$ with $a_{i}>b$

Definition

algebra $(\mathcal{A},>)$ is simple monotone if every interpretation function $f_{\mathcal{A}}$ is
(1) weakly monotone

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \geqslant f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $1 \leqslant i \leqslant n$ and $a_{1}, \ldots, a_{n}, b \in A$ with $a_{i}>b$
2 simple

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \geqslant a_{i}
$$

for all $1 \leqslant i \leqslant n$

Definition

algebra $(\mathcal{A},>)$ is simple monotone if every interpretation function $f_{\mathcal{A}}$ is
(1) weakly monotone

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \geqslant f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $1 \leqslant i \leqslant n$ and $a_{1}, \ldots, a_{n}, b \in A$ with $a_{i}>b$
(2) simple

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \geqslant a_{i}
$$

for all $1 \leqslant i \leqslant n$

Remark

$>_{\mathcal{A}}$ need not be reduction order for well-founded simple monotone algebra $(\mathcal{A},>)$

Theorem (Touzet 1998; Zantema 2001)

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq>_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A},>)$

Theorem (Touzet 1998; Zantema 2001)

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq>_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A},>)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Theorem (Touzet 1998; Zantema 2001)

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq>_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A},>)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Remarks

- termination proof uses ordinals

Theorem (Touzet 1998; Zantema 2001)

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq>_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A},>)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Remarks

- termination proof uses ordinals
- addition on ordinals is weakly monotone but not strictly monotone

$$
2+\omega=1+\omega
$$

Theorem (Touzet 1998; Zantema 2001)

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq>_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A},>)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Remarks

- termination proof uses ordinals
- addition on ordinals is weakly monotone but not strictly monotone

$$
2+\omega=1+\omega
$$

- natural addition on ordinals is strictly monotone

$$
2 \oplus \omega \quad>\quad 1 \oplus \omega
$$

Theorem (Touzet 1998; Zantema 2001)

TRS \mathcal{R} over finite signature is terminating if $\mathcal{R} \subseteq>_{\mathcal{A}}$ for simple monotone algebra $(\mathcal{A},>)$

Theorem (Touzet 1998)

TRS \mathbb{T} is terminating

Remarks

- termination proof uses ordinals
- addition on ordinals is weakly monotone but not strictly monotone

$$
2+\omega=1+\omega
$$

- natural addition on ordinals is strictly monotone

$$
2 \oplus \omega=\omega+2>\omega+1=1 \oplus \omega
$$

Example

TRS \mathcal{R}

$$
f(g(x)) \rightarrow g(f(f(x)))
$$

is terminating

Example

TRS \mathcal{R}

$$
f(g(x)) \rightarrow g(f(f(x)))
$$

is terminating

- algebra $(\mathcal{A},>)$ with carrier \mathbb{O} (set of ordinals below $\left.\epsilon_{0}\right)$ and interpretations

$$
\mathrm{f}_{\mathcal{A}}(x)=x+1 \quad g_{\mathcal{A}}(x)=x+\omega
$$

Example

TRS \mathcal{R}

$$
f(g(x)) \rightarrow g(f(f(x)))
$$

is terminating

- algebra $(\mathcal{A},>)$ with carrier \mathbb{O} (set of ordinals below $\left.\epsilon_{0}\right)$ and interpretations

$$
\mathrm{f}_{\mathcal{A}}(x)=x+1 \quad g_{\mathcal{A}}(x)=x+\omega
$$

- $(\mathcal{A},>)$ is weakly monotone and simple

Example

TRS \mathcal{R}

$$
f(g(x)) \rightarrow g(f(f(x)))
$$

is terminating

- algebra $(\mathcal{A},>)$ with carrier \mathbb{O} (set of ordinals below $\left.\epsilon_{0}\right)$ and interpretations

$$
f_{\mathcal{A}}(x)=x+1 \quad g_{\mathcal{A}}(x)=x+\omega
$$

- $(\mathcal{A},>)$ is weakly monotone and simple
- $\mathcal{R} \subseteq>_{\mathcal{A}}$

$$
\mathrm{f}_{\mathcal{A}}\left(\mathrm{g}_{\mathcal{A}}(x)\right)=x+\omega+1 \quad x+2+\omega=\mathrm{g}_{\mathcal{A}}\left(\mathrm{f}_{\mathcal{A}}\left(\mathrm{f}_{\mathcal{A}}(x)\right)\right)
$$

Example

TRS \mathcal{R}

$$
f(g(x)) \rightarrow g(f(f(x)))
$$

is terminating

- algebra $(\mathcal{A},>)$ with carrier \mathbb{O} (set of ordinals below $\left.\epsilon_{0}\right)$ and interpretations

$$
f_{\mathcal{A}}(x)=x+1 \quad g_{\mathcal{A}}(x)=x+\omega
$$

- $(\mathcal{A},>)$ is weakly monotone and simple
- $\mathcal{R} \subseteq>_{\mathcal{A}}$

$$
\mathrm{f}_{\mathcal{A}}\left(\mathrm{g}_{\mathcal{A}}(x)\right)=x+\omega+1>x+\omega=x+2+\omega=\mathrm{g}_{\mathcal{A}}\left(\mathrm{f}_{\mathcal{A}}\left(\mathrm{f}_{\mathcal{A}}(x)\right)\right)
$$

Outline

1. Battle of Hercules and Hydra

2. Termination

3. Hydras modulo AC

4. Termination modulo AC
5. Conclusion

Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

$$
x|y=y| x \quad(x \mid y)|z=x|(y \mid z)
$$

Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

$$
x|y=y| x \quad(x \mid y)|z=x|(y \mid z)
$$

Example

$\mathrm{i}(\mathrm{i}(\mathrm{h}) \mid \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{h}) \mid \mathrm{i}(\mathrm{h})) \mathrm{)} \mid \mathrm{h})$

Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

$$
x|y=y| x \quad(x \mid y)|z=x|(y \mid z)
$$

Example

$\mathrm{i}(\mathrm{i}(\mathrm{h}) \mid \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{h}) \mid \mathrm{i}(\mathrm{h})) \mathrm{)} \mid \mathrm{h}) \quad \mathrm{i}(\mathrm{i}(\mathrm{h})|\mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{h})|\mathrm{h}| \mathrm{h}))| \mathrm{h})$

Remark

to represent Hydras we use h (constant) i (unary) | (binary, infix, AC)

$$
x|y=y| x \quad(x \mid y)|z=x|(y \mid z)
$$

Example

$\mathrm{H}_{1} \quad \mathrm{H}_{2}$

H_{3}

$$
\mathrm{i}(\mathrm{i}(\mathrm{~h})|\mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h})))| \mathrm{h}) \quad \mathrm{i}(\mathrm{i}(\mathrm{~h})|\mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h})|\mathrm{h}| \mathrm{h}))| \mathrm{h}) \quad \mathrm{i}(\mathrm{i}(\mathrm{~h})|\mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}), \mathrm{h})|\mathrm{i}(\mathrm{i}(\mathrm{~h}), \mathrm{h})| \mathrm{i}(\mathrm{i}(\mathrm{~h}), \mathrm{h}))| \mathrm{h})
$$

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\})
$$

Definition

TRS \mathbb{H}

- signature h i |

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\}) \quad \mathcal{N}=\mathcal{T}(\{0, \mathrm{~s}\})
$$

Definition

TRS \mathbb{H}

- signature h i 0 (constant) s (unary)

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\}) \quad \mathcal{N}=\mathcal{T}(\{0, \mathrm{~s}\})
$$

Definition

TRS \mathbb{H}

- signature
h i |
0 (constant) s (unary)
A B C D (binary) E (unary)

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\}) \quad \mathcal{N}=\mathcal{T}(\{0, \mathrm{~s}\})
$$

Definition

TRS \mathbb{H}

- signature
h i
0 (constant)
s (unary)
A B C D (binary)
E (unary)
- rewrite rules

$$
\begin{aligned}
\mathrm{A}(n, \mathrm{i}(\mathrm{~h})) & \rightarrow \mathrm{h} \\
\mathrm{~A}(n, \mathrm{i}(\mathrm{~h} \mid x)) & \rightarrow \mathrm{A}(\mathrm{~s}(n), \mathrm{i}(x)) \\
\mathrm{A}(n, \mathrm{i}(x)) & \rightarrow \mathrm{B}(n, \mathrm{D}(\mathrm{~s}(n), \mathrm{i}(x)))
\end{aligned}
$$

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\}) \quad \mathcal{N}=\mathcal{T}(\{0, \mathrm{~s}\})
$$

Definition

TRS \mathbb{H}

- signature
h i
0 (constant)
s (unary)
A B C D (binary)
E (unary)
- rewrite rules

$$
\begin{aligned}
\mathrm{A}(n, \mathrm{i}(\mathrm{~h})) & \rightarrow \mathrm{h} \\
\mathrm{~A}(n, \mathrm{i}(\mathrm{~h} \mid x)) & \rightarrow \mathrm{A}(\mathrm{~s}(n), \mathrm{i}(x)) \\
\mathrm{A}(n, \mathrm{i}(x)) & \rightarrow \mathrm{B}(n, \mathrm{D}(\mathrm{~s}(n), \mathrm{i}(x)))
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x))) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x))) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x)) \mid y)
\end{aligned}
$$

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\}) \quad \mathcal{N}=\mathcal{T}(\{0, \mathrm{~s}\})
$$

Definition

TRS \mathbb{H}

- signature
h i |
0 (constant)
s (unary)
A B C D (binary)
E (unary)
- rewrite rules

$$
\begin{array}{rlrl}
\mathrm{A}(n, \mathrm{i}(\mathrm{~h})) & \rightarrow \mathrm{h} & \mathrm{D}(n, \mathrm{i}(\mathrm{i}(x))) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x))) \\
\mathrm{A}(n, \mathrm{i}(\mathrm{~h} \mid x)) & \rightarrow \mathrm{A}(\mathrm{~s}(n), \mathrm{i}(x)) & \mathrm{D}(n, \mathrm{i}(\mathrm{i}(x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x)) \mid y) \\
\mathrm{A}(n, \mathrm{i}(x)) & \rightarrow \mathrm{B}(n, \mathrm{D}(\mathrm{~s}(n), \mathrm{i}(x))) & \mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x)) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x))) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x))) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid y)) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}))) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}))
\end{array}
$$

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\}) \quad \mathcal{N}=\mathcal{T}(\{0, \mathrm{~s}\})
$$

Definition

TRS \mathbb{H}

- signature
h i
0 (constant)
s (unary)
A B C D (binary)
E (unary)
- rewrite rules

$$
\begin{aligned}
\mathrm{A}(n, \mathrm{i}(\mathrm{~h})) & \rightarrow \mathrm{h} \\
\mathrm{~A}(n, \mathrm{i}(\mathrm{~h} \mid x)) & \rightarrow \mathrm{A}(\mathrm{~s}(n), \mathrm{i}(x)) \\
\mathrm{A}(n, \mathrm{i}(x)) & \rightarrow \mathrm{B}(n, \mathrm{D}(\mathrm{~s}(n), \mathrm{i}(x))) \\
\mathrm{C}(0, x) & \rightarrow \mathrm{E}(x) \\
\mathrm{C}(\mathrm{~s}(n), x) & \rightarrow x \mid \mathrm{C}(n, x)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x))) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x))) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x)) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x)) \mid y) \\
\mathrm{D}(n, \mathrm{i} \mathrm{i}(\mathrm{~h} \mid x))) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x))) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid y)) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}))) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}))
\end{aligned}
$$

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\}) \quad \mathcal{N}=\mathcal{T}(\{0, \mathrm{~s}\})
$$

Definition

TRS \mathbb{H}

- signature
h i
0 (constant)
s (unary)
A B C D (binary)
E (unary)
- rewrite rules

$$
\begin{aligned}
\mathrm{A}(n, \mathrm{i}(\mathrm{~h})) & \rightarrow \mathrm{h} \\
\mathrm{~A}(n, \mathrm{i}(\mathrm{~h} \mid x)) & \rightarrow \mathrm{A}(\mathrm{~s}(n), \mathrm{i}(x)) \\
\mathrm{A}(n, \mathrm{i}(x)) & \rightarrow \mathrm{B}(n, \mathrm{D}(\mathrm{~s}(n), \mathrm{i}(x))) \\
\mathrm{C}(0, x) & \rightarrow \mathrm{E}(x) \\
\mathrm{C}(\mathrm{~s}(n), x) & \rightarrow x \mid \mathrm{C}(n, x) \\
\mathrm{i}(\mathrm{E}(x) \mid y) & \rightarrow \mathrm{E}(\mathrm{i}(x \mid y)) \\
\mathrm{i}(\mathrm{E}(x)) & \rightarrow \mathrm{E}(\mathrm{i}(x))
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x))) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x))) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x)) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x)) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x))) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x))) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid y)) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}))) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}))
\end{aligned}
$$

$$
\mathcal{H}=\mathcal{T}(\{\mathrm{h}, \mathrm{i}, \mid\}) \quad \mathcal{N}=\mathcal{T}(\{0, \mathrm{~s}\})
$$

Definition

TRS \mathbb{H}

- signature
h i
0 (constant)
s (unary)
A B C D (binary)
E (unary)
- rewrite rules

$$
\begin{aligned}
\mathrm{A}(n, \mathrm{i}(\mathrm{~h})) & \rightarrow \mathrm{h} \\
\mathrm{~A}(n, \mathrm{i}(\mathrm{~h} \mid x)) & \rightarrow \mathrm{A}(\mathrm{~s}(n), \mathrm{i}(x)) \\
\mathrm{A}(n, \mathrm{i}(x)) & \rightarrow \mathrm{B}(n, \mathrm{D}(\mathrm{~s}(n), \mathrm{i}(x))) \\
\mathrm{C}(0, x) & \rightarrow \mathrm{E}(x) \\
\mathrm{C}(\mathrm{~s}(n), x) & \rightarrow x \mid \mathrm{C}(n, x) \\
\mathrm{i}(\mathrm{E}(x) \mid y) & \rightarrow \mathrm{E}(\mathrm{i}(x \mid y)) \\
\mathrm{i}(\mathrm{E}(x)) & \rightarrow \mathrm{E}(\mathrm{i}(x))
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x))) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x))) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x)) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x) \mid y)) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x)) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x))) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x))) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid y)) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}) \mid y) \\
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}))) & \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h})) \\
\mathrm{B}(n, \mathrm{E}(x)) & \rightarrow \mathrm{A}(\mathrm{~s}(n), x)
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\mathrm{A}\left(0, H_{1}\right)
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\mathrm{A}\left(0, H_{1}\right) \rightarrow \mathrm{B}\left(0, \mathrm{D}\left(\mathrm{~s}(0), H_{1}\right)\right)
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\mathrm{A}\left(0, H_{1}\right) \rightarrow \mathrm{B}\left(0, \mathrm{D}\left(\mathrm{~s}(0), H_{1}\right)\right)=\mathrm{AC} \cdot \rightarrow \mathrm{~B}(0, \mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h}))
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
\mathrm{A}\left(0, H_{1}\right) & \rightarrow \mathrm{B}\left(0, \mathrm{D}\left(\mathrm{~s}(0), H_{1}\right)\right)=\mathrm{AC} \cdot \rightarrow \mathrm{~B}(0, \mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
& \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h}))
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
\mathrm{A}\left(0, H_{1}\right) & \rightarrow \mathrm{B}\left(0, \mathrm{D}\left(\mathrm{~s}(0), H_{1}\right)\right)=\mathrm{AC} \cdot \rightarrow \mathrm{~B}(0, \mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
& \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{C}(\mathrm{~s}(0), \mathrm{h}) \mid \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h}))
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
\mathrm{A}\left(0, H_{1}\right) & \rightarrow \mathrm{B}\left(0, \mathrm{D}\left(\mathrm{~s}(0), H_{1}\right)\right)=\mathrm{AC} \cdot \rightarrow \mathrm{~B}(0, \mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
& \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{C}(\mathrm{~s}(0), \mathrm{h}) \mid \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
& \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}|\mathrm{C}(0, \mathrm{~h})| \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h}))
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
\mathrm{A}\left(0, H_{1}\right) & \rightarrow \mathrm{B}\left(0, \mathrm{D}\left(\mathrm{~s}(0), H_{1}\right)\right)=\mathrm{AC} \cdot \rightarrow \mathrm{~B}(0, \mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
& \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{C}(\mathrm{~s}(0), \mathrm{h}) \mid \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
& \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}|\mathrm{C}(0, \mathrm{~h})| \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}|\mathrm{E}(\mathrm{~h})| \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h}))
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
A\left(0, H_{1}\right) & \rightarrow B\left(0, D\left(s(0), H_{1}\right)\right)=A C \cdot B(0, i(D(s(0), i(i(i(h) \mid i(h))))|i(h)| h)) \\
& \rightarrow B(0, i(i(D(s(0), i(i(h) \mid i(h))))|i(h)| h)) \rightarrow B(0, i(i(i(C(s(0), h) \mid i(h)))|i(h)| h)) \\
& \rightarrow B(0, i(i(i(h|C(0, h)| i(h)))|i(h)| h)) \rightarrow B(0, i(i(i(h|E(h)| i(h)))|i(h)| h)) \\
=A C & \rightarrow B(0, i(i(E(i(h|h| i(h))))|i(h)| h))
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
& \mathrm{A}\left(0, H_{1}\right) \rightarrow \mathrm{B}\left(0, \mathrm{D}\left(\mathrm{~s}(0), H_{1}\right)\right)=\mathrm{AC} \cdot \rightarrow \mathrm{~B}(0, \mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
& \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{D}(\mathrm{~s}(0), \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{C}(\mathrm{~s}(0), \mathrm{h}) \mid \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
& \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}|\mathrm{C}(0, \mathrm{~h})| \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{i}(\mathrm{~h}|\mathrm{E}(\mathrm{~h})| \mathrm{i}(\mathrm{~h})))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \\
&=\mathrm{B}(0, \mathrm{i}(\mathrm{i}(\mathrm{E}(\mathrm{i}(\mathrm{~h}|\mathrm{~h}| \mathrm{i}(\mathrm{~h})))))|\mathrm{i}(\mathrm{~h})| \mathrm{h})) \rightarrow \mathrm{B}(0, \mathrm{i}(\mathrm{E}(\mathrm{i}(\mathrm{i}(\mathrm{~h}|\mathrm{~h}| \mathrm{i}(\mathrm{~h}))))|\mathrm{i}(\mathrm{~h})| \mathrm{h}))
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{\mathrm{h}\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
A\left(0, H_{1}\right) & \rightarrow B\left(0, D\left(s(0), H_{1}\right)\right)=A C \cdot B(0, i(D(s(0), i(i(i(h) \mid i(h))))|i(h)| h)) \\
& \rightarrow B(0, i(i(D(s(0), i(i(h) \mid i(h))))|i(h)| h)) \rightarrow B(0, i(i(i(C(s(0), h) \mid i(h)))|i(h)| h)) \\
& \rightarrow B(0, i(i(i(h|C(0, h)| i(h)))|i(h)| h)) \rightarrow B(0, i(i(i(h|E(h)| i(h)))|i(h)| h)) \\
=A C & \rightarrow B(0, i(i(E(i(h|h| i(h))))|i(h)| h)) \rightarrow B(0, i(E(i(i(h|h| i(h))))|i(h)| h)) \\
& \rightarrow B(0, E(i(i(i(h|h| i(h))))|i(h)| h))
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{h\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
A\left(0, H_{1}\right) & \rightarrow B\left(0, D\left(s(0), H_{1}\right)\right)=A C \cdot B(0, i(D(s(0), i(i(i(h) \mid i(h))))|i(h)| h)) \\
& \rightarrow B(0, i(i(D(s(0), i(i(h) \mid i(h))))|i(h)| h)) \rightarrow B(0, i(i(i(C(s(0), h) \mid i(h)))|i(h)| h)) \\
& \rightarrow B(0, i(i(i(h|C(0, h)| i(h)))|i(h)| h)) \rightarrow B(0, i(i(i(h|E(h)| i(h)))|i(h)| h)) \\
=A C & \rightarrow B(0, i(i(E(i(h|h| i(h))))|i(h)| h)) \rightarrow B(0, i(E(i(i(h|h| i(h))))|i(h)| h)) \\
& \rightarrow B(0, E(i(i(i(h|h| i(h))))|i(h)| h)) \rightarrow A(s(0), i(i(i(h|h| i(h))))|i(h)| h)
\end{aligned}
$$

Theorem

if $H, H^{\prime} \in \mathcal{H} \backslash\{h\}$ encode successive Hydras in arbitrary battle then

$$
\mathrm{A}(n, H)(\rightarrow /=\mathrm{AC})^{+} \mathrm{A}\left(\mathrm{~s}(n), H^{\prime}\right)
$$

for some $n \in \mathcal{N}$

Example

$$
\begin{aligned}
& A\left(0, H_{1}\right) \rightarrow B\left(0, D\left(s(0), H_{1}\right)\right)=A C \rightarrow B(0, i(D(s(0), i(i(i(h) \mid i(h))))|i(h)| h)) \\
& \rightarrow B(0, i(i(D(s(0), i(i(h) \mid i(h))))|i(h)| h)) \rightarrow B(0, i(i(i(C(s(0), h) \mid i(h)))|i(h)| h)) \\
& \rightarrow B(0, i(i(i(h|C(0, h)| i(h)))|i(h)| h)) \rightarrow B(0, i(i(i(h|E(h)| i(h)))|i(h)| h)) \\
&=A C \rightarrow B(0, i(i(E(i(h|h| i(h))))|i(h)| h)) \rightarrow B(0, i(E(i(i(h|h| i(h))))|i(h)| h)) \\
& \rightarrow B(0, E(i(i(i(h|h| i(h))))|i(h)| h)) \rightarrow A(s(0), i(i(i(h|h| i(h))))|i(h)| h) \\
&=A C A\left(s(0), H_{2}\right)
\end{aligned}
$$

Outline

1. Battle of Hercules and Hydra
2. Termination
3. Hydras modulo AC
4. Termination modulo AC

5. Conclusion

Theorem (Middeldorp \& Ohsaki 1997)

non-collapsing TRS over many-sorted signature is AC terminating
\Longleftrightarrow corresponding TRS over unsorted version of signature is AC terminating

Theorem (Middeldorp \& Ohsaki 1997)

non-collapsing TRS over many-sorted signature is AC terminating
\Longleftrightarrow corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Theorem (Middeldorp \& Ohsaki 1997)

non-collapsing TRS over many-sorted signature is AC terminating
\Longleftrightarrow corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Definition

two sorts O and N for TRS \mathbb{H} with

$$
\mathrm{h}: \mathrm{O} \quad \mathrm{i}, \mathrm{E}: \mathrm{O} \rightarrow \mathrm{O} \quad \mid: \mathrm{O} \times \mathrm{O} \rightarrow \mathrm{O} \quad 0: \mathrm{N} \quad \mathrm{~s}: \mathrm{N} \rightarrow \mathrm{~N} \quad \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}: \mathrm{N} \times \mathrm{O} \rightarrow \mathrm{O}
$$

Theorem (Middeldorp \& Ohsaki 1997)

non-collapsing TRS over many-sorted signature is AC terminating
\Longleftrightarrow corresponding TRS over unsorted version of signature is AC terminating

Remark

AC extension of (type introduction) result of Zantema (1994)

Definition

two sorts O and N for TRS \mathbb{H} with

$$
\mathrm{h}: \mathrm{O} \quad \mathrm{i}, \mathrm{E}: \mathrm{O} \rightarrow \mathrm{O} \quad \mid: \mathrm{O} \times \mathrm{O} \rightarrow \mathrm{O} \quad 0: \mathrm{N} \quad \mathrm{~s}: \mathrm{N} \rightarrow \mathrm{~N} \quad \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}: \mathrm{N} \times \mathrm{O} \rightarrow \mathrm{O}
$$

Remark

TRS \mathbb{H} is non-collapsing and each rewrite rule consists of well-typed terms of same sort

Definition

\mathcal{S}-sorted \mathcal{F}-algebra $\mathcal{A}=\left(\left\{S_{\mathcal{A}}\right\}_{S \in \mathcal{S}},\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ equipped with strict order $>$ on union of all carrier sets is simple monotone if
(1) every carrier set is non-empty

Definition

\mathcal{S}-sorted \mathcal{F}-algebra $\mathcal{A}=\left(\left\{S_{\mathcal{A}}\right\}_{S \in \mathcal{S}},\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ equipped with strict order $>$ on union of all carrier sets is simple monotone if
(1) every carrier set is non-empty
(2) $\left(S_{i}\right)_{\mathcal{A}} \subseteq S_{\mathcal{A}}$ for all $f: S_{1} \times \cdots \times S_{n} \rightarrow S$ in \mathcal{F}

Definition

\mathcal{S}-sorted \mathcal{F}-algebra $\mathcal{A}=\left(\left\{S_{\mathcal{A}}\right\}_{S \in \mathcal{S}},\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ equipped with strict order $>$ on union of all carrier sets is simple monotone if
(1) every carrier set is non-empty
(2) $\left(S_{i}\right)_{\mathcal{A}} \subseteq S_{\mathcal{A}}$ for all $f: S_{1} \times \cdots \times S_{n} \rightarrow S$ in \mathcal{F}
(3) every interpretation function $f_{\mathcal{A}}$ is simple and weakly monotone

Definition

\mathcal{S}-sorted \mathcal{F}-algebra $\mathcal{A}=\left(\left\{S_{\mathcal{A}}\right\}_{S \in \mathcal{S}},\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ equipped with strict order $>$ on union of all carrier sets is simple monotone if
(1) every carrier set is non-empty
(2) $\left(S_{i}\right)_{\mathcal{A}} \subseteq S_{\mathcal{A}}$ for all $f: S_{1} \times \cdots \times S_{n} \rightarrow S$ in \mathcal{F}
(3) every interpretation function $f_{\mathcal{A}}$ is simple and weakly monotone

Definition

algebra $(\mathcal{A},>)$ is totally ordered if $>$ is total order

Theorem

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F}-algebra $(\mathcal{A},>)$

Theorem

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is $A C$ terminating if there exists totally ordered simple monotone many-sorted \mathcal{F}-algebra $(\mathcal{A},>)$ such that
$1 \mathcal{R} \subseteq>_{\mathcal{A}}$

Theorem

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is $A C$ terminating if there exists totally ordered simple monotone many-sorted \mathcal{F}-algebra $(\mathcal{A},>)$ such that
$1 \mathcal{R} \subseteq>_{\mathcal{A}}$
$2 \mathrm{AC} \subseteq=\mathcal{A}$

Theorem

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F}-algebra $(\mathcal{A},>)$ such that
$1 \mathcal{R} \subseteq>_{\mathcal{A}}$
$2 \mathrm{AC} \subseteq={ }_{\mathcal{A}}$
$3 f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Theorem

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F}-algebra $(\mathcal{A},>)$ such that
$1 \mathcal{R} \subseteq>_{\mathcal{A}}$
$2 \mathrm{AC} \subseteq=\mathcal{A}$
$3 f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (\mathcal{B}, \sqsupset) with $\mathcal{B}=\left(\left\{S_{\mathcal{B}}\right\}_{s \in \mathcal{S}},\left\{f_{\mathcal{B}}\right\}_{f \in \mathcal{F}}\right)$

Theorem

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F}-algebra $(\mathcal{A},>)$ such that
$1 \mathcal{R} \subseteq>_{\mathcal{A}}$
$2 \mathrm{AC} \subseteq=\mathcal{A}$
$3 f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (\mathcal{B}, \sqsupset) with $\mathcal{B}=\left(\left\{S_{\mathcal{B}}\right\}_{S \in \mathcal{S}},\left\{f_{\mathcal{B}}\right\}_{f \in \mathcal{F}}\right)$ as follows:

- $S_{\mathcal{B}}=\mathcal{M}\left(S_{\mathcal{A}}\right)$

Theorem

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F}-algebra $(\mathcal{A},>)$ such that
$1 \mathcal{R} \subseteq>_{\mathcal{A}}$
$2 \mathrm{AC} \subseteq=\mathcal{A}$
$3 f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (\mathcal{B}, \sqsupset) with $\mathcal{B}=\left(\left\{S_{\mathcal{B}}\right\}_{S \in \mathcal{S}},\left\{f_{\mathcal{B}}\right\}_{f \in \mathcal{F}}\right)$ as follows:

- $S_{\mathcal{B}}=\mathcal{M}\left(S_{\mathcal{A}}\right)$
- $f_{\mathcal{B}}\left(M_{1}, \ldots, M_{n}\right)= \begin{cases}\hat{f}_{\mathcal{A}}\left(M_{1}, \ldots, M_{n}\right) \uplus \widehat{f}_{\mathcal{A}}\left(M_{1}, \ldots, M_{n}\right) & \text { if } f_{\mathcal{A}} \text { is strictly monotone } \\ \left\{f_{\mathcal{A}}\left(\max M_{1}, \ldots, \max M_{n}\right)\right\} \uplus M_{1} \uplus \cdots \uplus M_{n} & \text { otherwise }\end{cases}$ with $\widehat{f}_{\mathcal{A}}\left(M_{1}, \ldots, M_{n}\right)=\left\{f_{\mathcal{A}}\left(m_{1}, \ldots, m_{n}\right) \mid\left(m_{1}, \ldots, m_{n}\right) \in M_{1} \times \cdots \times M_{n}\right\}$

Theorem

TRS \mathcal{R} over finite many-sorted signature \mathcal{F} is AC terminating if there exists totally ordered simple monotone many-sorted \mathcal{F}-algebra $(\mathcal{A},>)$ such that
$1 \mathcal{R} \subseteq>_{\mathcal{A}}$
$2 \mathrm{AC} \subseteq=\mathcal{A}$
$3 f_{\mathcal{A}}$ is strictly monotone for all AC symbols f

Proof sketch

define many-sorted algebra (\mathcal{B}, \sqsupset) with $\mathcal{B}=\left(\left\{S_{\mathcal{B}}\right\}_{S \in \mathcal{S}},\left\{f_{\mathcal{B}}\right\}_{f \in \mathcal{F}}\right)$ as follows:

- $S_{\mathcal{B}}=\mathcal{M}\left(S_{\mathcal{A}}\right)$
- $f_{\mathcal{B}}\left(M_{1}, \ldots, M_{n}\right)= \begin{cases}\hat{f}_{\mathcal{A}}\left(M_{1}, \ldots, M_{n}\right) \uplus \widehat{f}_{\mathcal{A}}\left(M_{1}, \ldots, M_{n}\right) & \text { if } f_{\mathcal{A}} \text { is strictly monotone } \\ \left\{f_{\mathcal{A}}\left(\max M_{1}, \ldots, \max M_{n}\right)\right\} \uplus M_{1} \uplus \cdots \uplus M_{n} & \text { otherwise }\end{cases}$ with $\widehat{f}_{\mathcal{A}}\left(M_{1}, \ldots, M_{n}\right)=\left\{f_{\mathcal{A}}\left(m_{1}, \ldots, m_{n}\right) \mid\left(m_{1}, \ldots, m_{n}\right) \in M_{1} \times \cdots \times M_{n}\right\}$
- $コ=>_{\text {mul }}$

Proof sketch (cont'd)

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone

Proof sketch (cont'd)

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \sqsupset_{B} has subterm property

Proof sketch (cont'd)

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \sqsupset_{B} has subterm property
- $\sqsupset_{\mathcal{B}}$ is simplification order

Proof sketch (cont'd)

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \sqsupset_{B} has subterm property
- $\sqsupset_{\mathcal{B}}$ is simplification order and thus well-founded

Proof sketch (cont'd)

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \sqsupset_{B} has subterm property
- $\sqsupset_{\mathcal{B}}$ is simplification order and thus well-founded
- $>_{\mathcal{A}} \subseteq \sqsupset_{\mathcal{B}}$

Proof sketch (cont'd)

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \sqsupset_{B} has subterm property
- $\sqsupset_{\mathcal{B}}$ is simplification order and thus well-founded
- $>_{\mathcal{A}} \subseteq \sqsupset_{\mathcal{B}}$
- $A C \subseteq=_{\mathcal{B}}$

Proof sketch (cont'd)

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \sqsupset_{B} has subterm property
- $\sqsupset_{\mathcal{B}}$ is simplification order and thus well-founded
- $>_{\mathcal{A}} \subseteq \sqsupset_{\mathcal{B}}$
- $A C \subseteq={ }_{\mathcal{B}}$
$\cdot{ }_{A C} \cdot \rightarrow \cdot=_{A C} \subseteq=_{\mathcal{B}} \cdot \sqsupset_{\mathcal{B}} \cdot=_{\mathcal{B}} \subseteq \sqsupset_{\mathcal{B}}$

Proof sketch (cont'd)

- interpretation functions $f_{\mathcal{B}}$ are strictly monotone
- \sqsupset_{B} has subterm property
- $\sqsupset_{\mathcal{B}}$ is simplification order and thus well-founded
- $>_{\mathcal{A}} \subseteq \sqsupset_{\mathcal{B}}$
- $A C \subseteq=\mathcal{B}$
$\cdot{ }_{A C} \cdot \rightarrow \cdot=_{A C} \subseteq=_{\mathcal{B}} \cdot \sqsupset_{\mathcal{B}} \cdot=_{\mathcal{B}} \subseteq \sqsupset_{\mathcal{B}}$

Theorem

TRS \mathbb{H} is AC terminating

Proof sketch

$\{\mathrm{O}, \mathrm{N}\}$-sorted algebra \mathcal{A}

Proof sketch

$\{\mathrm{O}, \mathrm{N}\}$-sorted algebra \mathcal{A} with

- carriers $\mathrm{O}_{\mathcal{A}}=(\mathbb{O} \backslash\{0,1\}) \times \mathbb{N} \times \mathbb{N}$ and $\mathbf{N}_{\mathcal{A}}=(\mathbb{N} \backslash\{0,1\}) \times \mathbb{N} \times \mathbb{N}$

Proof sketch

$\{\mathrm{O}, \mathrm{N}\}$-sorted algebra \mathcal{A} with

- carriers $\mathrm{O}_{\mathcal{A}}=(\mathbb{O} \backslash\{0,1\}) \times \mathbb{N} \times \mathbb{N}$ and $\mathrm{N}_{\mathcal{A}}=(\mathbb{N} \backslash\{0,1\}) \times \mathbb{N} \times \mathbb{N}$
- lexicographic order $>_{\mathrm{O}}=\left(>_{\mathbb{O}},>,>\right)_{\text {lex }}$ on $\mathrm{O}_{\mathcal{A}}$

Proof sketch

$\{\mathrm{O}, \mathrm{N}\}$-sorted algebra \mathcal{A} with

- carriers $\mathrm{O}_{\mathcal{A}}=(\mathbb{O} \backslash\{0,1\}) \times \mathbb{N} \times \mathbb{N}$ and $\mathrm{N}_{\mathcal{A}}=(\mathbb{N} \backslash\{0,1\}) \times \mathbb{N} \times \mathbb{N}$
- lexicographic order $>_{\mathrm{O}}=\left(>_{\mathbb{O}},>,>\right)_{\text {lex }}$ on $\mathrm{O}_{\mathcal{A}}$
- interpretation functions

$$
\begin{aligned}
0_{\mathcal{A}} & =\mathrm{h}_{\mathcal{A}}=(2,0,0) \\
\mathrm{s}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right)\right) & =\left(n_{1}+2,0,0\right) \\
\mathrm{i}_{\mathcal{A}}\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(\omega^{x_{1}}, x_{2}+1, x_{3}+1\right) \\
\left.\left(x_{1}, x_{2}, x_{3}\right)\right|_{\mathcal{A}}\left(y_{1}, y_{2}, y_{3}\right) & =\left(x_{1} \oplus y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \\
\mathrm{A}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(n_{1}+x_{1}, n_{2}+2 x_{2}+2,0\right) \\
\mathrm{B}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(2+n_{1}+x_{1}, n_{2}+2 x_{2}+1,0\right) \\
\mathrm{C}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(x_{1} \cdot n_{1}, 0,0\right) \\
\mathrm{D}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(n_{1}+x_{1}, n_{2}+x_{2}, n_{2}+n_{3}+x_{2}+x_{3}\right) \\
\mathrm{E}_{\mathcal{A}}\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(x_{1}, x_{2}+1,0\right)
\end{aligned}
$$

Proof sketch

$\{\mathrm{O}, \mathrm{N}\}$-sorted algebra \mathcal{A} with

- carriers $\mathrm{O}_{\mathcal{A}}=(\mathbb{O} \backslash\{0,1\}) \times \mathbb{N} \times \mathbb{N}$ and $\mathrm{N}_{\mathcal{A}}=(\mathbb{N} \backslash\{0,1\}) \times \mathbb{N} \times \mathbb{N}$
- lexicographic order $>_{0}=\left(>_{\mathbb{O}},>,>\right)_{\text {lex }}$ on $\mathrm{O}_{\mathcal{A}}$
- interpretation functions

$$
\begin{aligned}
0_{\mathcal{A}} & =\mathrm{h}_{\mathcal{A}}=(2,0,0) \\
\mathrm{s}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right)\right) & =\left(n_{1}+2,0,0\right) \\
\mathrm{i}_{\mathcal{A}}\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(\omega^{x_{1}}, x_{2}+1, x_{3}+1\right) \\
\left.\left(x_{1}, x_{2}, x_{3}\right)\right|_{\mathcal{A}}\left(y_{1}, y_{2}, y_{3}\right) & =\left(x_{1} \oplus y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \\
\mathrm{A}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(n_{1}+x_{1}, n_{2}+2 x_{2}+2,0\right) \\
\mathrm{B}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(2+n_{1}+x_{1}, n_{2}+2 x_{2}+1,0\right) \\
\mathrm{C}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(x_{1} \cdot n_{1}, 0,0\right) \\
\mathrm{D}_{\mathcal{A}}\left(\left(n_{1}, n_{2}, n_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(n_{1}+x_{1}, n_{2}+x_{2}, n_{2}+n_{3}+x_{2}+x_{3}\right) \\
\mathrm{E}_{\mathcal{A}}\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =\left(x_{1}, x_{2}+1,0\right)
\end{aligned}
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq={ }_{\mathcal{A}}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{A}(n, \mathrm{i}(\mathrm{~h})) \rightarrow \mathrm{h}
$$

translates to

$$
\left(\omega^{2},-,-\right)>_{0}(2,-,-)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{A}(n, \mathrm{i}(\mathrm{~h} \mid x)) \rightarrow \mathrm{A}(\mathrm{~s}(n), \mathrm{i}(x))
$$

translates to

$$
\left(\omega^{x_{1}+2},-,-\right)>_{0}\left(\omega^{x_{1}},-,-\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{A}(n, \mathrm{i}(x)) \rightarrow \mathrm{B}(n, \mathrm{D}(\mathrm{~s}(n), \mathrm{i}(x)))
$$

translates to

$$
\left(\omega^{x_{1}}, n_{2}+2 x_{2}+4,-\right)>_{0}\left(\omega^{x_{1}}, n_{2}+2 x_{2}+3,-\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x))) \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x)))
$$

translates to

$$
\left(\omega^{\omega^{x_{1}}}, n_{2}+x_{2}+2, n_{2}+n_{3}+x_{2}+x_{3}+4\right)>0\left(\omega^{\omega^{x_{1}}}, n_{2}+x_{2}+2, n_{2}+n_{3}+x_{2}+x_{3}+3\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(x) \mid y)) \rightarrow \mathrm{i}(\mathrm{D}(n, \mathrm{i}(x)) \mid y)
$$

translates to

$$
\left(\omega^{\omega^{x_{1}} \oplus y_{1}}, n_{2}+x_{2}+y_{2}+2, n_{2}+n_{3}+x_{2}+x_{3}+y_{2}+y_{3}+4\right)>_{0} \quad\left(\omega^{\omega^{x_{1}} \oplus y_{1}}, n_{2}+x_{2}+y_{2}+2, n_{2}+n_{3}+x_{2}+x_{3}+y_{3}+3\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x) \mid y)) \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x)) \mid y)
$$

translates to

$$
\left(\omega^{\omega^{x_{1}+2} \oplus y_{1}},-,-\right)>_{0}\left(\omega^{\omega^{x_{1}} \cdot n_{1} \oplus y_{1}},-,-\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h} \mid x))) \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{i}(x)))
$$

translates to

$$
\left(\omega^{\omega^{x_{1}+2}},-,-\right)>0\left(\omega^{\omega^{x_{1}} \cdot n_{1}}, 一,-\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}) \mid y)) \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}) \mid y)
$$

translates to

$$
\left(\omega^{\omega^{2} \oplus y_{1}},-,-\right)>_{0}\left(\omega^{y_{1}+2 n_{1}},-,-\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{D}(n, \mathrm{i}(\mathrm{i}(\mathrm{~h}))) \rightarrow \mathrm{i}(\mathrm{C}(n, \mathrm{~h}))
$$

translates to

$$
\left(\omega^{\omega^{2}},-,-\right)>0\left(\omega^{2 n_{1}},-,-\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{C}(0, x) \rightarrow \mathrm{E}(x)
$$

translates to

$$
\left(x_{1} \cdot 2,-,-\right)>_{0}\left(x_{1},-,-\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{C}(\mathrm{~s}(n), x) \rightarrow x \mid \mathrm{C}(n, x)
$$

translates to

$$
\left(x_{1} \cdot\left(n_{1}+2\right),-,-\right)>_{0}\left(x_{1} \cdot\left(n_{1}+1\right),-,-\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{i}(\mathrm{E}(x) \mid y) \rightarrow \mathrm{E}(\mathrm{i}(x \mid y))
$$

translates to

$$
\left(\omega^{x_{1} \oplus y_{1}}, x_{2}+y_{2}+2, y_{3}+1\right)>_{0}\left(\omega^{x_{1} \oplus y_{1}}, x_{2}+y_{2}+2,0\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{i}(\mathrm{E}(x)) \rightarrow \mathrm{E}(\mathrm{i}(x))
$$

translates to

$$
\left(\omega^{x_{1}}, x_{2}+2,1\right)>_{0}\left(\omega^{x_{1}}, x_{2}+2,0\right)
$$

Proof sketch

- $\left.\right|_{\mathcal{A}}$ is strictly monotone
- $\mathrm{AC} \subseteq=\mathcal{A}$
- all interpretation functions are simple and monotone
- $\mathbb{H} \subseteq>_{\mathcal{A}}$

$$
\mathrm{B}(n, \mathrm{E}(x)) \rightarrow \mathrm{A}(\mathrm{~s}(n), x)
$$

translates to

$$
\left(2+n_{1}+x_{1}, n_{2}+2 x_{2}+3,-\right)>_{0}\left(2+n_{1}+x_{1}, 2 x_{2}+2,-\right)
$$

Outline

```
1. Battle of Hercules and Hydra
2. Termination
3. Hydras modulo AC
4. Termination modulo AC
```


5. Conclusion

Concluding Remarks

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC

Concluding Remarks

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination

Concluding Remarks

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination
- many-sortedness is essential for termination proof of battle

Concluding Remarks

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination
- many-sortedness is essential for termination proof of battle
- termination of \mathbb{H}, AC (as opposed to \mathbb{H} / AC) is sufficient

Concluding Remarks

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination
- many-sortedness is essential for termination proof of battle
- termination of \mathbb{H}, AC (as opposed to \mathbb{H} / AC) is sufficient
- Hydras are not ordinals

Concluding Remarks

- faithful encoding of Battle of Hercules and Hydra as TRS modulo AC
- new semantic method for AC termination
- many-sortedness is essential for termination proof of battle
- termination of \mathbb{H}, AC (as opposed to \mathbb{H} / AC) is sufficient
- Hydras are not ordinals
big thanks to
Hans Zantema
for many important contributations to (termination techniques for) term rewriting

Postdoc Position

- 3-year project position in Innsbruck
- FWF/JSPS project ARI: Automation of Rewriting Infrastucture
- https://ari-informatik.uibk.ac.at/position.php
- application deadline: June 15, 2022

