
HALLO
Ongoing joint work with Patrick Baillot, Ugo dal Lago,
Cynthia Kop, and Deivid Vale
June 8, 2022

A Rewriting Characterization
of Higher-Order Feasibility via
Tuple Interpretations
Ongoing joint work with Patrick Baillot, Ugo dal Lago,
Cynthia Kop, and Deivid Vale
June 8, 2022

1/27

Summary

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

2/27

Outline

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

3/27

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N → N)k × Nℓ → N

This problem has been studied since the 70’s.

Why this problem is interesting?

• most tasks considered feasible are in P

• most tasks outside of P seems quite infeasible
• almost all reasonable models of deterministic computation are

polynomially related
• both P and PF have good closure properties

4/27

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N → N)k × Nℓ → N

This problem has been studied since the 70’s.

Why this problem is interesting?

• most tasks considered feasible are in P

• most tasks outside of P seems quite infeasible
• almost all reasonable models of deterministic computation are

polynomially related
• both P and PF have good closure properties

4/27

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N → N)k × Nℓ → N

This problem has been studied since the 70’s.

Why this problem is interesting?

• most tasks considered feasible are in P

• most tasks outside of P seems quite infeasible

• almost all reasonable models of deterministic computation are
polynomially related

• both P and PF have good closure properties

4/27

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N → N)k × Nℓ → N

This problem has been studied since the 70’s.

Why this problem is interesting?

• most tasks considered feasible are in P

• most tasks outside of P seems quite infeasible
• almost all reasonable models of deterministic computation are

polynomially related

• both P and PF have good closure properties

4/27

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N → N)k × Nℓ → N

This problem has been studied since the 70’s.

Why this problem is interesting?

• most tasks considered feasible are in P

• most tasks outside of P seems quite infeasible
• almost all reasonable models of deterministic computation are

polynomially related
• both P and PF have good closure properties

4/27

Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring... BFFs

they are...

• second order functionals (Type-2)
• can be captured by type-2 limited recursion on notation
• can be computed in terms of OTM in polynomial time

5/27

Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring... BFFs

they are...
• second order functionals (Type-2)

• can be captured by type-2 limited recursion on notation
• can be computed in terms of OTM in polynomial time

5/27

Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring... BFFs

they are...
• second order functionals (Type-2)
• can be captured by type-2 limited recursion on notation

• can be computed in terms of OTM in polynomial time

5/27

Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring... BFFs

they are...
• second order functionals (Type-2)
• can be captured by type-2 limited recursion on notation
• can be computed in terms of OTM in polynomial time

5/27

Basic Feasible Functionals (BFFs)

The BFF recursive scheme.

F is defined from G ,H, and K by limited recursion on notation (LRN) if
for all f⃗ , x⃗ , and y ,

F (f⃗ , x⃗ , 0) = G (f⃗ , x⃗)

F (f⃗ , x⃗ , y) = H(f⃗ , x⃗ , y ,F (f⃗ , x⃗ , ⌊x/2⌋)), y > 0,

|F (f⃗ , x⃗ , y)| ≤ |K (f⃗ , x⃗ , y)|.

Definition
The class BFF is the smallest class of functionals containing FPTIME and
the application functional (λλFx .F (x)), and closed under: composition,
expansion, and LRN.

6/27

Goal

Our goal is to characterize BFFs via higher-order rewriting and tuple
interpretations.

7/27

Outline

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

8/27

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols
and rules.
• abstraction and application

• function symbols with arity:

nil :: list cons :: nat × list=⇒natlist
map :: (nat=⇒nat)× list=⇒list

• variables of higher-order type.

9/27

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols
and rules.
• abstraction and application
• function symbols with arity:

nil :: list cons :: nat × list=⇒natlist
map :: (nat=⇒nat)× list=⇒list

• variables of higher-order type.

9/27

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols
and rules.
• abstraction and application
• function symbols with arity:

nil :: list cons :: nat × list=⇒natlist
map :: (nat=⇒nat)× list=⇒list

• variables of higher-order type.

9/27

Strongly monotonic functionals in a nutshell

General idea:
• for every base type ι: let LιM = Np[ι] for some p[ι];
• say ⟨n1, . . . , np⟩ > ⟨m1, . . . ,mp⟩ if n1 > m1 and each ni ≥ mi ;

• for every arrow type σ ⇒ τ : let Lσ ⇒ τM = { monotonic functions
from LσM to LτM }

• say f > g if f (x) > g(x) for all x

• for each symbol f : [σ1 × · · · × σk] ⇒ τ : map f to a monotonic
function in Lσ1M × · · · × LσkM ⇒ LτM;

• prove that JℓK > JrK for all rules ℓ → r .

10/27

Strongly monotonic functionals in a nutshell

General idea:
• for every base type ι: let LιM = Np[ι] for some p[ι];
• say ⟨n1, . . . , np⟩ > ⟨m1, . . . ,mp⟩ if n1 > m1 and each ni ≥ mi ;
• for every arrow type σ ⇒ τ : let Lσ ⇒ τM = { monotonic functions

from LσM to LτM }

• say f > g if f (x) > g(x) for all x

• for each symbol f : [σ1 × · · · × σk] ⇒ τ : map f to a monotonic
function in Lσ1M × · · · × LσkM ⇒ LτM;

• prove that JℓK > JrK for all rules ℓ → r .

10/27

Strongly monotonic functionals in a nutshell

General idea:
• for every base type ι: let LιM = Np[ι] for some p[ι];
• say ⟨n1, . . . , np⟩ > ⟨m1, . . . ,mp⟩ if n1 > m1 and each ni ≥ mi ;
• for every arrow type σ ⇒ τ : let Lσ ⇒ τM = { monotonic functions

from LσM to LτM }
• say f > g if f (x) > g(x) for all x
• for each symbol f : [σ1 × · · · × σk] ⇒ τ : map f to a monotonic

function in Lσ1M × · · · × LσkM ⇒ LτM;
• prove that JℓK > JrK for all rules ℓ → r .

10/27

Higher-order tuple interpretations: an example

nil :: list
cons :: [nat × list] ⇒ list
map :: [(nat ⇒ nat)× list] ⇒ list

map(F , nil) → nil
map(F , cons(x , a)) → cons(F · x , map(F , a))

Semantics: LlistM = ⟨cost, length,maximum⟩
• JnilK = ⟨0, 0, 0⟩
• Jcons(x , a)K = ⟨xcost + acost, alen + 1,max(xsize, amax)⟩
• Jmap(F , a)K = ⟨cost, length,maximum⟩, where:

– length:

alen

– maximum:

F (⟨acost, amax⟩)s

– cost:

(alen + 1) ∗ (F (⟨acost, amax⟩)cost + 1)
Roughly: JmapK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost

11/27

Higher-order tuple interpretations: an example

nil :: list
cons :: [nat × list] ⇒ list
map :: [(nat ⇒ nat)× list] ⇒ list

map(F , nil) → nil
map(F , cons(x , a)) → cons(F · x , map(F , a))

Semantics: LlistM = ⟨cost, length,maximum⟩
• JnilK = ⟨0, 0, 0⟩
• Jcons(x , a)K = ⟨xcost + acost, alen + 1,max(xsize, amax)⟩
• Jmap(F , a)K = ⟨cost, length,maximum⟩, where:

– length:

alen

– maximum:

F (⟨acost, amax⟩)s

– cost:

(alen + 1) ∗ (F (⟨acost, amax⟩)cost + 1)
Roughly: JmapK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost

11/27

Higher-order tuple interpretations: an example

nil :: list
cons :: [nat × list] ⇒ list
map :: [(nat ⇒ nat)× list] ⇒ list

map(F , nil) → nil
map(F , cons(x , a)) → cons(F · x , map(F , a))

Semantics: LlistM = ⟨cost, length,maximum⟩
• JnilK = ⟨0, 0, 0⟩
• Jcons(x , a)K = ⟨xcost + acost, alen + 1,max(xsize, amax)⟩
• Jmap(F , a)K = ⟨cost, length,maximum⟩, where:

– length: alen
– maximum:

F (⟨acost, amax⟩)s

– cost:

(alen + 1) ∗ (F (⟨acost, amax⟩)cost + 1)
Roughly: JmapK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost

11/27

Higher-order tuple interpretations: an example

nil :: list
cons :: [nat × list] ⇒ list
map :: [(nat ⇒ nat)× list] ⇒ list

map(F , nil) → nil
map(F , cons(x , a)) → cons(F · x , map(F , a))

Semantics: LlistM = ⟨cost, length,maximum⟩
• JnilK = ⟨0, 0, 0⟩
• Jcons(x , a)K = ⟨xcost + acost, alen + 1,max(xsize, amax)⟩
• Jmap(F , a)K = ⟨cost, length,maximum⟩, where:

– length: alen
– maximum: F (⟨acost, amax⟩)s
– cost:

(alen + 1) ∗ (F (⟨acost, amax⟩)cost + 1)
Roughly: JmapK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost

11/27

Higher-order tuple interpretations: an example

nil :: list
cons :: [nat × list] ⇒ list
map :: [(nat ⇒ nat)× list] ⇒ list

map(F , nil) → nil
map(F , cons(x , a)) → cons(F · x , map(F , a))

Semantics: LlistM = ⟨cost, length,maximum⟩
• JnilK = ⟨0, 0, 0⟩
• Jcons(x , a)K = ⟨xcost + acost, alen + 1,max(xsize, amax)⟩
• Jmap(F , a)K = ⟨cost, length,maximum⟩, where:

– length: alen
– maximum: F (⟨acost, amax⟩)s
– cost: (alen + 1) ∗ (F (⟨acost, amax⟩)cost + 1)

Roughly: JmapK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost

11/27

Higher-order tuple interpretations: an example

nil :: list
cons :: [nat × list] ⇒ list
map :: [(nat ⇒ nat)× list] ⇒ list

map(F , nil) → nil
map(F , cons(x , a)) → cons(F · x , map(F , a))

Semantics: LlistM = ⟨cost, length,maximum⟩
• JnilK = ⟨0, 0, 0⟩
• Jcons(x , a)K = ⟨xcost + acost, alen + 1,max(xsize, amax)⟩
• Jmap(F , a)K = ⟨cost, length,maximum⟩, where:

– length: alen
– maximum: F (⟨acost, amax⟩)s
– cost: (alen + 1) ∗ (F (⟨acost, amax⟩)cost + 1)

Roughly: JmapK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost

11/27

Outline

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

12/27

Recall: runtime complexity

Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”
Basic term: function(data, . . . , data)
Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

Problem: does this make sense for higher-order rewriting?

13/27

Recall: runtime complexity

Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”
Basic term: function(data, . . . , data)
Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

Problem: does this make sense for higher-order rewriting?

13/27

Higher-order runtime complexity?

Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”
Basic term: function(data, . . . , data)

• map(λx .s(x), some lst)?
• f(λx .cons(x , cons(x , nil)), some data)?

Choice: data must be a first-order constructor term.

14/27

Higher-order runtime complexity?

Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”
Basic term: function(data, . . . , data)

• map(λx .s(x), some lst)?

• f(λx .cons(x , cons(x , nil)), some data)?

Choice: data must be a first-order constructor term.

14/27

Higher-order runtime complexity?

Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”
Basic term: function(data, . . . , data)

• map(λx .s(x), some lst)?
• f(λx .cons(x , cons(x , nil)), some data)?

Choice: data must be a first-order constructor term.

14/27

Higher-order runtime complexity?

Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”
Basic term: function(data, . . . , data)

• map(λx .s(x), some lst)?
• f(λx .cons(x , cons(x , nil)), some data)?

Choice: data must be a first-order constructor term.

14/27

Higher-order runtime complexity examples

add(0, y) → y
add(s(x), y) → add(x , s(y))
map(F , nil) → nil

map(F , cons(x , a)) → cons(F · x , map(F , a))

start(x , a) → map(λy .add(x , y), a)

Terms of interest: map(λy .add(s, y), t)

Basic term: start(sn(0), cons(sa(0), cons(sb(0), . . . , nil)))

Runtime complexity: n 7→ O(n2) (length of t * size of s)

15/27

Higher-order runtime complexity examples

add(0, y) → y
add(s(x), y) → add(x , s(y))
map(F , nil) → nil

map(F , cons(x , a)) → cons(F · x , map(F , a))
start(x , a) → map(λy .add(x , y), a)

Terms of interest: map(λy .add(s, y), t)

Basic term: start(sn(0), cons(sa(0), cons(sb(0), . . . , nil)))

Runtime complexity: n 7→ O(n2) (length of t * size of s)

15/27

Higher-order runtime complexity examples

add(0, y) → y
add(s(x), y) → add(x , s(y))
map(F , nil) → nil

map(F , cons(x , a)) → cons(F · x , map(F , a))
start(x , a) → map(λy .add(x , y), a)

Terms of interest: map(λy .add(s, y), t)

Basic term: start(sn(0), cons(sa(0), cons(sb(0), . . . , nil)))

Runtime complexity: n 7→ O(n2) (length of t * size of s)

15/27

Higher-order runtime complexity examples

add(0, y) → y
add(s(x), y) → add(x , s(y))
map(F , nil) → nil

map(F , cons(x , a)) → cons(F · x , map(F , a))
start(x , a) → map(λy .add(x , y), a)

Terms of interest: map(λy .add(s, y), t)

Basic term: start(sn(0), cons(sa(0), cons(sb(0), . . . , nil)))

Runtime complexity: n 7→ O(n2)

(length of t * size of s)

15/27

Higher-order runtime complexity examples

add(0, y) → y
add(s(x), y) → add(x , s(y))
map(F , nil) → nil

map(F , cons(x , a)) → cons(F · x , map(F , a))
start(x , a) → map(λy .add(x , y), a)

Terms of interest: map(λy .add(s, y), t)

Basic term: start(sn(0), cons(sa(0), cons(sb(0), . . . , nil)))

Runtime complexity: n 7→ O(n2) (length of t * size of s)

15/27

Heretofore...

• A simple idea: algebra interpretations with set = Np,

• important usage: different sets for different sorts,
• essentially: a generalization of matrix interpretations,
• runtime complexity still makes higher-order sense (somewhat)
• a more expressive complexity notion?

16/27

Heretofore...

• A simple idea: algebra interpretations with set = Np,
• important usage: different sets for different sorts,

• essentially: a generalization of matrix interpretations,
• runtime complexity still makes higher-order sense (somewhat)
• a more expressive complexity notion?

16/27

Heretofore...

• A simple idea: algebra interpretations with set = Np,
• important usage: different sets for different sorts,
• essentially: a generalization of matrix interpretations,

• runtime complexity still makes higher-order sense (somewhat)
• a more expressive complexity notion?

16/27

Heretofore...

• A simple idea: algebra interpretations with set = Np,
• important usage: different sets for different sorts,
• essentially: a generalization of matrix interpretations,
• runtime complexity still makes higher-order sense (somewhat)

• a more expressive complexity notion?

16/27

Heretofore...

• A simple idea: algebra interpretations with set = Np,
• important usage: different sets for different sorts,
• essentially: a generalization of matrix interpretations,
• runtime complexity still makes higher-order sense (somewhat)
• a more expressive complexity notion?

16/27

Outline

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

17/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a BFF

• show that every BFF can be embedded as a TRS

18/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a BFF
• show that every BFF can be embedded as a TRS

18/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a
BFF

– we limit constructor symbols to additive interpretations
– all defined symbols have polynomial bounded interpretations
– we add an infinite number of extra function symbols f to

represent the calls to ORACLES
– the cost int. of each oracle call is 1 and the size is polynomially

bounded

19/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a
BFF
– we limit constructor symbols to additive interpretations

– all defined symbols have polynomial bounded interpretations
– we add an infinite number of extra function symbols f to

represent the calls to ORACLES
– the cost int. of each oracle call is 1 and the size is polynomially

bounded

19/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a
BFF
– we limit constructor symbols to additive interpretations
– all defined symbols have polynomial bounded interpretations

– we add an infinite number of extra function symbols f to
represent the calls to ORACLES

– the cost int. of each oracle call is 1 and the size is polynomially
bounded

19/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a
BFF
– we limit constructor symbols to additive interpretations
– all defined symbols have polynomial bounded interpretations
– we add an infinite number of extra function symbols f to

represent the calls to ORACLES

– the cost int. of each oracle call is 1 and the size is polynomially
bounded

19/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a
BFF
– we limit constructor symbols to additive interpretations
– all defined symbols have polynomial bounded interpretations
– we add an infinite number of extra function symbols f to

represent the calls to ORACLES
– the cost int. of each oracle call is 1 and the size is polynomially

bounded

19/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a BFF
• show that every BFF can be embedded as a TRS

– BLP2 is a second order imperative stateful programming
language

– a functional is in BFF iff it can be computed by a BLP2 program
– we then show that all BLP2 programs can be computed by

second order TRSs with polynomial interpretations

20/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a BFF
• show that every BFF can be embedded as a TRS

– BLP2 is a second order imperative stateful programming
language

– a functional is in BFF iff it can be computed by a BLP2 program

– we then show that all BLP2 programs can be computed by
second order TRSs with polynomial interpretations

20/27

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a BFF
• show that every BFF can be embedded as a TRS

– BLP2 is a second order imperative stateful programming
language

– a functional is in BFF iff it can be computed by a BLP2 program
– we then show that all BLP2 programs can be computed by

second order TRSs with polynomial interpretations

20/27

Overview

• tuple interpretations allow us to split computation information into
different cost and size components

• this ability allowed us to properly model oracle calls and bound their
costs

• it adds expressivity to the complexity measure
• we can implicitly capture higher-order Feasibility!
• it is very interesting!

Thank you!

21/27

Overview

• tuple interpretations allow us to split computation information into
different cost and size components

• this ability allowed us to properly model oracle calls and bound their
costs

• it adds expressivity to the complexity measure
• we can implicitly capture higher-order Feasibility!
• it is very interesting!

Thank you!

21/27

Overview

• tuple interpretations allow us to split computation information into
different cost and size components

• this ability allowed us to properly model oracle calls and bound their
costs

• it adds expressivity to the complexity measure

• we can implicitly capture higher-order Feasibility!
• it is very interesting!

Thank you!

21/27

Overview

• tuple interpretations allow us to split computation information into
different cost and size components

• this ability allowed us to properly model oracle calls and bound their
costs

• it adds expressivity to the complexity measure
• we can implicitly capture higher-order Feasibility!

• it is very interesting!

Thank you!

21/27

Overview

• tuple interpretations allow us to split computation information into
different cost and size components

• this ability allowed us to properly model oracle calls and bound their
costs

• it adds expressivity to the complexity measure
• we can implicitly capture higher-order Feasibility!
• it is very interesting!

Thank you!

21/27

Overview

• tuple interpretations allow us to split computation information into
different cost and size components

• this ability allowed us to properly model oracle calls and bound their
costs

• it adds expressivity to the complexity measure
• we can implicitly capture higher-order Feasibility!
• it is very interesting!

Thank you!

21/27

Overview

• tuple interpretations allow us to split computation information into
different cost and size components

• this ability allowed us to properly model oracle calls and bound their
costs

• it adds expressivity to the complexity measure
• we can implicitly capture higher-order Feasibility!
• it is very interesting!

Thank you!

21/27

BFFs extra definitions

Definition
Given a functional F we say that
• F is defined from H,G1, . . . ,Gl by functional composition if for all f⃗

and x⃗ ,
F (f⃗ , x⃗) = H(f⃗ ,G1(f⃗ , x⃗), . . . ,Gl(f⃗ , x⃗)).

• F is defined from G by expansion if for all f⃗ , g⃗ , x⃗ , and y⃗ ,

F (f⃗ , g⃗ , x⃗ , y⃗) = G (f⃗ , x⃗).

22/27

More than matrix and polynomial interpretations!

minus(x , 0) → x
minus(s(x), s(y)) → minus(x , y)

quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x , y), s(y)))

• Cannot be done with polynomial interpretations, since always
Jminus(x , y)K ≥ JyK.

• Cannot be done with matrix interpretations due to duplication of y .
• Can be done with tuple interpretations!

J0K = ⟨0, 0⟩
Js(x)K = ⟨xcost, xsize + 1⟩

Jminus(x , y)K = ⟨xcost + ycost + ysize + 1, xsize⟩
Jquot(x , y)K = ⟨xcost + ycost + xsize + xsize ∗ (ysize + ycost) + 1,

xsize⟩

23/27

More than matrix and polynomial interpretations!

minus(x , 0) → x
minus(s(x), s(y)) → minus(x , y)

quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x , y), s(y)))

• Cannot be done with polynomial interpretations, since always
Jminus(x , y)K ≥ JyK.

• Cannot be done with matrix interpretations due to duplication of y .
• Can be done with tuple interpretations!

J0K = ⟨0, 0⟩
Js(x)K = ⟨xcost, xsize + 1⟩

Jminus(x , y)K = ⟨xcost + ycost + ysize + 1, xsize⟩
Jquot(x , y)K = ⟨xcost + ycost + xsize + xsize ∗ (ysize + ycost) + 1,

xsize⟩

23/27

More than matrix and polynomial interpretations!

minus(x , 0) → x
minus(s(x), s(y)) → minus(x , y)

quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x , y), s(y)))

• Cannot be done with polynomial interpretations, since always
Jminus(x , y)K ≥ JyK.

• Cannot be done with matrix interpretations due to duplication of y .

• Can be done with tuple interpretations!
J0K = ⟨0, 0⟩

Js(x)K = ⟨xcost, xsize + 1⟩
Jminus(x , y)K = ⟨xcost + ycost + ysize + 1, xsize⟩
Jquot(x , y)K = ⟨xcost + ycost + xsize + xsize ∗ (ysize + ycost) + 1,

xsize⟩

23/27

More than matrix and polynomial interpretations!

minus(x , 0) → x
minus(s(x), s(y)) → minus(x , y)

quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x , y), s(y)))

• Cannot be done with polynomial interpretations, since always
Jminus(x , y)K ≥ JyK.

• Cannot be done with matrix interpretations due to duplication of y .
• Can be done with tuple interpretations!

J0K = ⟨0, 0⟩
Js(x)K = ⟨xcost, xsize + 1⟩

Jminus(x , y)K = ⟨xcost + ycost + ysize + 1, xsize⟩
Jquot(x , y)K = ⟨xcost + ycost + xsize + xsize ∗ (ysize + ycost) + 1,

xsize⟩

23/27

Some other examples

filter(F , nil) → nil
filter(F , cons(x , a)) → consif(F · x , x , filter(F , a))

consif(true, x , a) → cons(x , a)
consif(false, x , a) → a

Cost: 1 + (alen + 1) ∗ (2 + acost + F (⟨acost, amax⟩)cost)

Roughly:
JfilterK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost + len ∗ cost

24/27

Some other examples

filter(F , nil) → nil
filter(F , cons(x , a)) → consif(F · x , x , filter(F , a))

consif(true, x , a) → cons(x , a)
consif(false, x , a) → a

Cost: 1 + (alen + 1) ∗ (2 + acost + F (⟨acost, amax⟩)cost)

Roughly:
JfilterK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost + len ∗ cost

24/27

Some other examples

filter(F , nil) → nil
filter(F , cons(x , a)) → consif(F · x , x , filter(F , a))

consif(true, x , a) → cons(x , a)
consif(false, x , a) → a

Cost: 1 + (alen + 1) ∗ (2 + acost + F (⟨acost, amax⟩)cost)

Roughly:
JfilterK(F , ⟨cost, len,max⟩)cost ≈ len ∗ F (⟨cost,max⟩)cost︸ ︷︷ ︸

map-like component!

+len ∗ cost

24/27

Some other examples

rec(0, y ,F) → y
rec(s(x), y ,F) → F · x · rec(x , y ,F)

Cost: Helper [x ,F]xlen+1(⟨1 + ycost, ysize⟩) where
Helper [x ,F] = z 7→ ⟨ F (x , z)cost, max(zsize,F (x , z)size) ⟩

Roughly: JrecK(⟨cost, size⟩, y ,F) ≈
(z 7→ F (⟨cost, size⟩, z))size(x).

Compare: JfoldK(F , x , ⟨cost, len,max⟩) ≈
(z 7→ F (z , ⟨cost,max⟩))len(x).

25/27

Some other examples

rec(0, y ,F) → y
rec(s(x), y ,F) → F · x · rec(x , y ,F)

Cost: Helper [x ,F]xlen+1(⟨1 + ycost, ysize⟩) where
Helper [x ,F] = z 7→ ⟨ F (x , z)cost, max(zsize,F (x , z)size) ⟩

Roughly: JrecK(⟨cost, size⟩, y ,F) ≈
(z 7→ F (⟨cost, size⟩, z))size(x).

Compare: JfoldK(F , x , ⟨cost, len,max⟩) ≈
(z 7→ F (z , ⟨cost,max⟩))len(x).

25/27

Some other examples

rec(0, y ,F) → y
rec(s(x), y ,F) → F · x · rec(x , y ,F)

Cost: Helper [x ,F]xlen+1(⟨1 + ycost, ysize⟩) where
Helper [x ,F] = z 7→ ⟨ F (x , z)cost, max(zsize,F (x , z)size) ⟩

Roughly: JrecK(⟨cost, size⟩, y ,F) ≈
(z 7→ F (⟨cost, size⟩, z))size(x).

Compare: JfoldK(F , x , ⟨cost, len,max⟩) ≈
(z 7→ F (z , ⟨cost,max⟩))len(x).

25/27

Some other examples

der(λx .y) → λz .0
der(λx .x) → λz .one

der(λx .sin(x)) → λz .cos(z)
der(λx .cos(x)) → λz .minus(sin(z))

der(λx .plus(F · x ,G · x)) → λz .plus(der(F) · z , der(G) · z)
der(λx .times(F · x ,G · x)) → λz .plus(times(der(F) · z ,G · z),

times(F · z , der(G) · z))
der(λx .ln(F · x)) → λz .div(der(F) · z ,F · z)

Cost of der(F , z): 1 + F (z)cost + 2 ∗ F (z)size + F (z)ndif ∗ F (z)cost
≈ F (z)ndif ∗ F (z)cost

26/27

Thank you!

27/27

	Higher-order Feasibility
	HO Rewriting and Tuple Interpretations
	Runtime Complexity
	BFFs Characterization

