A Rewriting Characterization
of Higher-Order Feasibility via
Tuple Interpretations

Ongoing joint work with Patrick Baillot, Ugo dal Lago,
Cynthia Kop, and Deivid Vale
June 8, 2022

iCIS | Software Science [JE=5

Radboud University [

Summary

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

2/27 iCIS | Software Science
Radboud University

QOutline

Higher-order Feasibility

3/27 iCIS | Software Science
Radboud University

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N= N¥xN =N

This problem has been studied since the 70's.

4/27 iCIS | Software Science
Radboud University

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N= N¥xN =N
This problem has been studied since the 70's.

Why this problem is interesting?

® most tasks considered feasible are in P

4/27 iCIS | Software Science
Radboud University

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N= N¥xN =N
This problem has been studied since the 70's.

Why this problem is interesting?

® most tasks considered feasible are in P

® most tasks outside of P seems quite infeasible

4/27 iCIS | Software Science
Radboud University

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N= N¥xN =N
This problem has been studied since the 70's.

Why this problem is interesting?

® most tasks considered feasible are in P
® most tasks outside of P seems quite infeasible

® almost all reasonable models of deterministic computation are
polynomially related

4/27 iCIS | Software Science
Radboud University

Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N= N¥xN =N
This problem has been studied since the 70's.
Why this problem is interesting?
® most tasks considered feasible are in P

® most tasks outside of P seems quite infeasible

® almost all reasonable models of deterministic computation are
polynomially related

® both P and PF have good closure properties

4/27 iCIS | Software Science
Radboud University

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

5/27 iCIS | Software Science
Radboud University

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

they are...
® second order functionals (Type-2)

5/27 iCIS | Software Science
Radboud University

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

they are...
® second order functionals (Type-2)
® can be captured by type-2 limited recursion on notation

5/27 iCIS | Software Science
Radboud University

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

they are...
® second order functionals (Type-2)
® can be captured by type-2 limited recursion on notation

® can be computed in terms of OTM in polynomial time

5/27 iCIS | Software Science
Radboud University

Basic Feasible Functionals (BFFs)

The BFF recursive scheme.

F is defined from G, H, and K by limited recursion on notation (LRN) if
for all f,)’(’ and vy,

F(f_-',)_(’,O) = G(7)?)
F(f,%,y) = H(f,%,y, F(f,%, [x/2])),y > 0,
|F(F,%,y)| < |K(F, %,)|

Definition

The class BFF is the smallest class of functionals containing FPTIME and
the application functional (AFx.F(x)), and closed under: composition,
expansion, and LRN.

6/27 iCIS | Software Science
Radboud University

Goal

Our goal is to characterize BFFs via higher-order rewriting and tuple
interpretations.

7/27 iCIS | Software Science
Radboud University

QOutline

HO Rewriting and Tuple Interpretations

8/27 iCIS | Software Science
Radboud University

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols
and rules.
® abstraction and application

9/27 iCIS | Software Science
Radboud University

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols
and rules.

® abstraction and application

® function symbols with arity:

nil :: list cons :: nat X list=>natlist
map : (nat=>nat) X list==list

9/27 iCIS | Software Science
Radboud University

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols
and rules.
® abstraction and application

® function symbols with arity:

nil :: list cons :: nat X list=>natlist
map : (nat=>nat) X list==list

® variables of higher-order type.

9/27 iCIS | Software Science
Radboud University

Strongly monotonic functionals in a nutshell

General idea:
e for every base type i: let (1) = NPl for some p[i];

® say (m,...,np) > (m,...,mp) if 1 > my and each n; > m;;

® for each symbol £ : [o1 X --- X 0] = 7: map £ to a monotonic
function in (o1) x --- x (ok) = (7);
® prove that [¢] > [r] for all rules £ — r.

10/27 iCIS | Software Science
Radboud University

Strongly monotonic functionals in a nutshell

General idea:
e for every base type i: let (1) = NPl for some p[i];
® say (m,...,np) > (m,...,mp) if 1 > my and each n; > m;;

e for every arrow type o = 7: let (¢ = 7)) = { monotonic functions
from (o) to (7) }

® for each symbol £ : [o1 X --- X 0k] = 7: map £ to a monotonic
function in (o1) x --- x (ok) = (7);
® prove that [¢] > [r] for all rules £ — r.

10/27 iCIS | Software Science
Radboud University

Strongly monotonic functionals in a nutshell

General idea:

e for every base type i: let (1) = NPl for some p[i];

® say (m,...,np) > (m,...,mp) if 1 > my and each n; > m;;

e for every arrow type o = 7: let (¢ = 7)) = { monotonic functions
from (o) to (7) }

o say f>gif f(x) > g(x) for all x

® for each symbol £ : [o1 X --- X 0k] = 7: map £ to a monotonic
function in (o1) x --- x (ok) = (7);

® prove that [¢] > [r] for all rules £ — r.

10/27 iCIS | Software Science

Radboud University

Higher-order tuple interpretations: an example

nil = list
cons : [nat x list] = list
map : [(nat = nat) x list] = list

map(F,nil) — nil
map(F, cons(x,a)) — cons(F - x,map(F,a))

11/27 iCIS | Software Science
Radboud University

Higher-order tuple interpretations: an example

nil = list
cons : [nat x list] = list
map : [(nat = nat) x list] = list

map(F,nil) — nil
map(F, cons(x,a)) — cons(F - x,map(F,a))

Semantics: (list) = (cost, length, maximum)
¢ [nil] =(0,0,0)
b [[COI’IS(X, a)]] = <Xcost + Acost; Alen + 17 maX(Xsize7 amax)>
® [map(F,a)] = (cost,length, maximum), where:

— length:

— maximum:

- cost:

11/27 iCIS | Software Science
Radboud University

Higher-order tuple interpretations: an example

nil = list
cons : [nat x list] = list
map : [(nat = nat) x list] = list

map(F,nil) — nil
map(F, cons(x,a)) — cons(F - x,map(F,a))

Semantics: (list) = (cost, length, maximum)
¢ [nil] =(0,0,0)
b [[COI’IS(X, a)]] = <Xcost + Acost; Alen + 17 maX(Xsize7 amax)>
® [map(F,a)] = (cost,length, maximum), where:

— length: ajn

— maximum:

- cost:

11/27 iCIS | Software Science
Radboud University

Higher-order tuple interpretations: an example

nil = list
cons : [nat x list] = list
map : [(nat = nat) x list] = list

map(F,nil) — nil
map(F, cons(x,a)) — cons(F - x,map(F,a))

Semantics: (list) = (cost, length, maximum)
¢ [nil] =(0,0,0)
hd [[COI’IS(X, a)]] = <Xcost + Acost; Alen + 17 maX(Xsize7 amax)>
® [map(F,a)] = (cost,length, maximum), where:

— length: ajn

- maximum: F((acost; dmax))s

- cost:

11/27 iCIS | Software Science
Radboud University

Higher-order tuple interpretations: an example

nil = list
cons : [nat x list] = list
map : [(nat = nat) x list] = list

map(F,nil) — nil
map(F, cons(x,a)) — cons(F - x,map(F,a))
Semantics: (list) = (cost, length, maximum)
¢ [nil] =(0,0,0)
b [[COI’IS(X, a)]] = <Xcost + Acost; Alen + 17 maX(Xsize7 amax)>
® [map(F,a)] = (cost,length, maximum), where:
— length: ajn

- maximum: F((acost, amax))s
- cost: (alen + 1) * (F(<acost7 amax>)cost + 1)

11/27 iCIS | Software Science
Radboud University

Higher-order tuple interpretations: an example

nil = list
cons : [nat x list] = list
map : [(nat = nat) x list] = list

map(F,nil) — nil
map(F, cons(x,a)) — cons(F - x,map(F,a))

Semantics: (list) = (cost, length, maximum)
¢ [nil] =(0,0,0)
b [[COI’IS(X, a)]] = <Xcost + acost, Alen + 1, maX(Xsize7 amax)>
® [map(F,a)] = (cost,length, maximum), where:

— length: ajn

- maximum: F((acost; dmax))s

- cost: (alen + 1) * (F(<acost7 amax>)cost + 1)
Roughly: [map](F, (cost,len, max))cost 2 len * F({cost, max))cost

11/27 iCIS | Software Science
Radboud University

QOutline

Runtime Complexity

12/27 iCIS | Software Science
Radboud University

Recall: runtime complexity

Runtime complexity:
n — “maximum derivation height for a basic term of size n"
Basic term: function(data,...,data)

Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

13/27 iCIS | Software Science
Radboud University

Recall: runtime complexity

Runtime complexity:
n — “maximum derivation height for a basic term of size n”
Basic term: function(data,...,data)

Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

Problem: does this make sense for higher-order rewriting?

13/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity?

Runtime complexity:
n — “maximum derivation height for a basic term of size n”
Basic term: function(data,...,data)

14/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity?

Runtime complexity:
n+— "maximum derivation height for a basic term of size n"
Basic term: function(data,...,data)

® map(Ax.s(x),some Ist)?

14/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity?

Runtime complexity:
n — “maximum derivation height for a basic term of size n"
Basic term: function(data,...,data)

® map(Ax.s(x),some Ist)?
e f(Ax.cons(x, cons(x,nil)),some data)?

14/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity?

Runtime complexity:
n — “maximum derivation height for a basic term of size n"
Basic term: function(data,...,data)

® map(Ax.s(x),some Ist)?
e f(Ax.cons(x, cons(x,nil)),some data)?

Choice: data must be a first-order constructor term.

14/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity examples

add(0,y) — y
add(s(x),y) — add(x,s(y))
map(F,nil) — nil
map(F,cons(x,a)) — cons(F - x,map(F, a))

Terms of interest: map(\y.add(s,y), t)

15/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity examples

add(0, y y
add(s(x), y add(x, s(y))
nil

cons(F - x,map(F, a))
map(Ay.add(x, y), a)
Terms of interest: map(\y.add(s,y), t)

LLlld

15/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity examples

add(0,y) — y
add(s(x),y) — add(x,s(y))
map(F,nil) — nil
map(F,cons(x,a)) — cons(F - x,map(F, a))
start(x,a) — map(\y.add(x,y),a

Terms of interest: map(\y.add(s, y), t)

Basic term: start(s"(0), cons(s?(0), cons(s®(0),...,nil)))

15/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity examples

add(0,y) — y
add(s(x),y) — add(x,s(y))
map(F,nil) — nil
map(F,cons(x,a)) — cons(F - x,map(F, a))
start(x,a) — map(\y.add(x,y),a

Terms of interest: map(\y.add(s, y), t)
Basic term: start(s"(0), cons(s?(0), cons(s®(0),...,nil)))

Runtime complexity: n — O(n?)

15/27 iCIS | Software Science
Radboud University

Higher-order runtime complexity examples

add(0,y) — y
add(s(x),y) — add(x,s(y))
map(F,nil) — nil
map(F,cons(x,a)) — cons(F - x,map(F, a))
start(x,a) — map(\y.add(x,y),a

Terms of interest: map(\y.add(s, y), t)
Basic term: start(s"(0), cons(s?(0), cons(s®(0),...,nil)))

Runtime complexity: n+— O(n?) (length of t * size of s)

15/27 iCIS | Software Science
Radboud University

Heretofore...

® A simple idea: algebra interpretations with set = NP,

16/27 iCIS | Software Science
Radboud University

Heretofore...

® A simple idea: algebra interpretations with set = NP,

® important usage: different sets for different sorts,

16/27 iCIS | Software Science
Radboud University

Heretofore...

® A simple idea: algebra interpretations with set = NP,
® important usage: different sets for different sorts,

® essentially: a generalization of matrix interpretations,

16/27 iCIS | Software Science
Radboud University

Heretofore...

® A simple idea: algebra interpretations with set = NP,

® important usage: different sets for different sorts,

® essentially: a generalization of matrix interpretations,

® runtime complexity still makes higher-order sense (somewhat)

16/27 iCIS | Software Science
Radboud University

Heretofore...

® A simple idea: algebra interpretations with set = NP,

® important usage: different sets for different sorts,

® essentially: a generalization of matrix interpretations,

® runtime complexity still makes higher-order sense (somewhat)

® 3 more expressive complexity notion?

16/27 iCIS | Software Science
Radboud University

QOutline

BFFs Characterization

17/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a BFF

18/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a BFF
® show that every BFF can be embedded as a TRS

18/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a
BFF

19/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a
BFF

— we limit constructor symbols to additive interpretations

19/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a
BFF
— we limit constructor symbols to additive interpretations
— all defined symbols have polynomial bounded interpretations

19/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a
BFF

— we limit constructor symbols to additive interpretations

— all defined symbols have polynomial bounded interpretations

— we add an infinite number of extra function symbols f to
represent the calls to ORACLES

19/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a
BFF

— we limit constructor symbols to additive interpretations

— all defined symbols have polynomial bounded interpretations

— we add an infinite number of extra function symbols f to
represent the calls to ORACLES

— the cost int. of each oracle call is 1 and the size is polynomially
bounded

19/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a BFF
® show that every BFF can be embedded as a TRS

— BLP, is a second order imperative stateful programming
language

20/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a BFF
® show that every BFF can be embedded as a TRS
— BLP, is a second order imperative stateful programming
language
— a functional is in BFF iff it can be computed by a BLP, program

20/27 iCIS | Software Science
Radboud University

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

® show that every TRS satisfying certain conditions represent a BFF
® show that every BFF can be embedded as a TRS
— BLP, is a second order imperative stateful programming
language
— a functional is in BFF iff it can be computed by a BLP, program
— we then show that all BLP, programs can be computed by
second order TRSs with polynomial interpretations

20/27 iCIS | Software Science
Radboud University

Overview

® tuple interpretations allow us to split computation information into
different cost and size components

21/27 iCIS | Software Science
Radboud University

Overview

® tuple interpretations allow us to split computation information into
different cost and size components

® this ability allowed us to properly model oracle calls and bound their
costs

21/27 iCIS | Software Science
Radboud University

Overview

® tuple interpretations allow us to split computation information into
different cost and size components

® this ability allowed us to properly model oracle calls and bound their
costs

® it adds expressivity to the complexity measure

21/27 iCIS | Software Science
Radboud University

Overview

® tuple interpretations allow us to split computation information into
different cost and size components

® this ability allowed us to properly model oracle calls and bound their
costs

® it adds expressivity to the complexity measure

e we can implicitly capture higher-order Feasibility!

21/27 iCIS | Software Science
Radboud University

Overview

® tuple interpretations allow us to split computation information into
different cost and size components

® this ability allowed us to properly model oracle calls and bound their
costs

® it adds expressivity to the complexity measure
e we can implicitly capture higher-order Feasibility!
® it is very interesting!

21/27 iCIS | Software Science
Radboud University

Overview

® tuple interpretations allow us to split computation information into
different cost and size components

® this ability allowed us to properly model oracle calls and bound their
costs

® it adds expressivity to the complexity measure
e we can implicitly capture higher-order Feasibility!
® it is very interesting!

21/27 iCIS | Software Science
Radboud University

Overview

® tuple interpretations allow us to split computation information into
different cost and size components

® this ability allowed us to properly model oracle calls and bound their
costs

® it adds expressivity to the complexity measure
e we can implicitly capture higher-order Feasibility!
® it is very interesting!

Thank you!

21/27 iCIS | Software Science
Radboud University

BFFs extra definitions

Definition

Given a functional F we say that

® [is defined from H, Gy, ..., G, by functional composition if for all f
and X,

F(f,%) = H(f, Gy(F, %), ..., G/(f,%)).

® Fis defined from G by expansion if for all £ g, X, and y,

—

F(f.&,%,7) = G(f,X).

22/27 iCIS | Software Science
Radboud University

More than matrix and polynomial interpretations!

minus(x,0) —
minus(s(x),s(y)) — minus(x,y)
quot(0,s(y)) — O
quot(s(x),s(y)) — s(quot(minus(x,y),s(y)))

X

23/27 iCIS | Software Science
Radboud University

More than matrix and polynomial interpretations!

minus(x,0) — x
minus(s(x),s(y)) — minus(x,y)
quot(0,s(y)) — O
quot(s(x),s(y)) — s(quot(minus(x,y),s(y)))

e (Cannot be done with polynomial interpretations, since always
[minus(x,y)] = [y].

23/27 iCIS | Software Science
Radboud University

More than matrix and polynomial interpretations!

minus(x,0) — x
minus(s(x),s(y)) — minus(x,y)
quot(0,s(y)) — O
quot(s(x),s(y)) — s(quot(minus(x,y),s(y)))

e (Cannot be done with polynomial interpretations, since always
[minus(x,y)] = [y].
® Cannot be done with matrix interpretations due to duplication of y.

23/27 iCIS | Software Science
Radboud University

More than matrix and polynomial interpretations!

minus(x,0) — x
minus(s(x),s(y)) — minus(x,y)
quot(0,s(y)) — O
quot(s(x),s(y)) — s(quot(minus(x,y),s(y)))
e (Cannot be done with polynomial interpretations, since always
[minus(x,y)] = [y].

® Cannot be done with matrix interpretations due to duplication of y.
® (Can be done with tuple interpretations!

[o] = (0,0)
[[S(X)]] = <XCOSt7 Xsize + 1>
[[minus(x, Y)]] = <Xcost + Yeost + Ysize + 1, Xsize>
[quOt(Xa y)]] = <Xcost + Yecost + Xsize + Xsize * (}/size + }/cost) + 17
Xsize>
23/27 iCIS | Software Science

Radboud University

Some other examples

filter(F,nil) — nil
filter(F,cons(x,a)) — consif(F-x,x,filter(F,a))
consif(true,x,a) — cons(x,a)
consif(false,x,a) — a

Cost: 1+ (alen + 1) * (2 + Acost + F(<aCOSt7 amax>)cost)

24/27 iCIS | Software Science
Radboud University

Some other examples

filter(F,nil)
filter(F, cons(x, a))
consif(true,x, a)
consif(false,x, a)

L4l

nil

consif(F - x,x,filter(F,a))
cons(x, a)

a

Cost: 1+ (alen + 1) * (2 + Acost + F(<3COSt7 amax>)cost)

Roughly:

[filter](F, (cost, len, max))cost = len x F({cost, max))cost + len * cost

24/27

iCIS | Software Science
Radboud University

Some other examples

filter(F,nil)
filter(F, cons(x, a))
consif(true,x, a)
consif(false,x, a)

L4l

nil

consif(F - x,x,filter(F,a))
cons(x, a)

a

Cost: 1+ (alen + 1) * (2 + Acost + F(<3COSt7 amax>)cost)

Roughly:

[filter](F, (cost, len, max))cost = len x F({cost, max))cost +len * cost

map-like component!

24/27

iCIS | Software Science
Radboud University

Some other examples

rec(0,y,F) — y
rec(s(x),y,F) — F-x-rec(x,y,F)

Cost: Helper[x, F]¥en ({1 + yeost, Ysize)) Where
Helper[x, F] = z = (F(X,Z)cost, Max(Zsize, F(X,2)size))

25/27 iCIS | Software Science
Radboud University

Some other examples

rec(0,y,F) — y
rec(s(x),y,F) — F-x-rec(x,y,F)

Cost: Helper[x, F]¥en ({1 + yeost, Ysize)) Where
Helper[x, F] = z = (F(X,Z)cost, Max(Zsize, F(X,2)size))

Roughly: [rec]((cost,size),y, F) ~
(z — F({cost,size), z))**¢(x).

25/27 iCIS | Software Science
Radboud University

Some other examples

rec(0,y,F) — y
rec(s(x),y,F) — F-x-rec(x,y,F)

Cost: Helper[x, F]¥en ({1 + yeost, Ysize)) Where
Helper[x, F] = z = (F(X,Z)cost, Max(Zsize, F(X,2)size))

Roughly: [rec]((cost,size),y, F) ~
(z — F({cost,size), z))**¢(x).

Compare: [fold](F,x, (cost,len, max)) ~
(z — F(z, {cost, max)))'"(x).

25/27 iCIS | Software Science
Radboud University

Some other examples

der(Ax.y)
der(Ax.x)
der(Ax.sin(x))
der(Ax.cos(x))
der(Ax.plus(F - x, G - x))
der(Ax.times(F - x, G - x))

der(Ax.1n(F - x))

Ll Ll

_>

Az.0

Az.one

Az.cos(z)

Az.minus(sin(z))

Az.plus(der(F) - z,der(G) - z)

Az.plus(times(der(F) -z,G -z
times(F - z,der(G) -

Az.div(der(F) -z, F - z)

),
z))

Cost of der(F,z): 14 F(2)cost + 2 * F(2)size + F(2)ndif * F(2)cost

~ F(Z)ndif * F(Z)cost

26/27

iCIS | Software Science
Radboud University

Thank you!

27/27 iCIS | Software Science
Radboud University

	Higher-order Feasibility
	HO Rewriting and Tuple Interpretations
	Runtime Complexity
	BFFs Characterization

