A Rewriting Characterization of Higher-Order Feasibility via

 Tuple InterpretationsOngoing joint work with Patrick Baillot, Ugo dal Lago, Cynthia Kop, and Deivid Vale June 8, 2022

Summary

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

Outline

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for functionals of type:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for functionals of type:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.
Why this problem is interesting?

- most tasks considered feasible are in P

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for functionals of type:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.
Why this problem is interesting?

- most tasks considered feasible are in P
- most tasks outside of P seems quite infeasible

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for functionals of type:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.

> Why this problem is interesting?

- most tasks considered feasible are in P
- most tasks outside of P seems quite infeasible
- almost all reasonable models of deterministic computation are polynomially related

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for functionals of type:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.

> Why this problem is interesting?

- most tasks considered feasible are in P
- most tasks outside of P seems quite infeasible
- almost all reasonable models of deterministic computation are polynomially related
- both P and $P F$ have good closure properties

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

they are...

- second order functionals (Type-2)

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

they are...

- second order functionals (Type-2)
- can be captured by type-2 limited recursion on notation

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

they are...

- second order functionals (Type-2)
- can be captured by type-2 limited recursion on notation
- can be computed in terms of OTM in polynomial time

Basic Feasible Functionals (BFFs)

The BFF recursive scheme.
F is defined from G, H, and K by limited recursion on notation (LRN) if for all \vec{f}, \vec{x}, and y,

$$
\begin{aligned}
F(\vec{f}, \vec{x}, 0) & =G(\vec{f}, \vec{x}) \\
F(\vec{f}, \vec{x}, y) & =H(\vec{f}, \vec{x}, y, F(\vec{f}, \vec{x},\lfloor x / 2\rfloor)), y>0, \\
|F(\vec{f}, \vec{x}, y)| & \leq|K(\vec{f}, \vec{x}, y)| .
\end{aligned}
$$

Definition

The class BFF is the smallest class of functionals containing FPTIME and the application functional $(\boldsymbol{\lambda} F x . F(x))$, and closed under: composition, expansion, and LRN.

Goal

Our goal is to characterize BFFs via higher-order rewriting and tuple interpretations.

Outline

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols and rules.

- abstraction and application

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols and rules.

- abstraction and application
- function symbols with arity:

$$
\begin{array}{rll}
\text { nil } & :: & \text { list cons }:: \text { nat } \times \text { list } \Longrightarrow \text { natlist } \\
\text { map } & :: & (\text { nat } \Longrightarrow \text { nat }) \times \text { list } \Longrightarrow \text { list }
\end{array}
$$

Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols and rules.

- abstraction and application
- function symbols with arity:

$$
\begin{array}{rll}
\text { nil } & :: \text { list cons }:: \text { nat } \times \text { list } \Longrightarrow \text { natlist } \\
\text { map } & :: \quad(\text { nat } \Longrightarrow \text { nat }) \times \text { list } \Longrightarrow \text { list }
\end{array}
$$

- variables of higher-order type.

Strongly monotonic functionals in a nutshell

General idea:

- for every base type ι : let $(\iota)=\mathbb{N}^{p[\iota]}$ for some $p[\iota]$;
- say $\left\langle n_{1}, \ldots, n_{p}\right\rangle>\left\langle m_{1}, \ldots, m_{p}\right\rangle$ if $n_{1}>m_{1}$ and each $n_{i} \geq m_{i}$;
- for each symbol $\mathrm{f}:\left[\sigma_{1} \times \cdots \times \sigma_{k}\right] \Rightarrow \tau$: map f to a monotonic function in $\left(\sigma_{1}\right) \times \cdots \times\left(\sigma_{k}\right) \Rightarrow(\tau)$;
- prove that $\llbracket \ell \rrbracket>\llbracket r \rrbracket$ for all rules $\ell \rightarrow r$.

Strongly monotonic functionals in a nutshell

General idea:

- for every base type ι : let $(\iota)=\mathbb{N}^{p[\iota]}$ for some $p[\iota]$;
- say $\left\langle n_{1}, \ldots, n_{p}\right\rangle>\left\langle m_{1}, \ldots, m_{p}\right\rangle$ if $n_{1}>m_{1}$ and each $n_{i} \geq m_{i}$;
- for every arrow type $\sigma \Rightarrow \tau$: let $(\sigma \Rightarrow \tau)=\{$ monotonic functions from (σ) to $(\tau)\}$
- for each symbol $\mathrm{f}:\left[\sigma_{1} \times \cdots \times \sigma_{k}\right] \Rightarrow \tau$: map f to a monotonic function in $\left(\sigma_{1}\right) \times \cdots \times\left(\sigma_{k}\right) \Rightarrow(\tau)$;
- prove that $\llbracket \ell \rrbracket>\llbracket r \rrbracket$ for all rules $\ell \rightarrow r$.

Strongly monotonic functionals in a nutshell

General idea:

- for every base type ι : let $(\iota)=\mathbb{N}^{p[\iota]}$ for some $p[\iota]$;
- say $\left\langle n_{1}, \ldots, n_{p}\right\rangle>\left\langle m_{1}, \ldots, m_{p}\right\rangle$ if $n_{1}>m_{1}$ and each $n_{i} \geq m_{i}$;
- for every arrow type $\sigma \Rightarrow \tau$: let $(\sigma \Rightarrow \tau)=\{$ monotonic functions from (σ) to $(\tau)\}$
- say $f>g$ if $f(x)>g(x)$ for all x
- for each symbol $\mathrm{f}:\left[\sigma_{1} \times \cdots \times \sigma_{k}\right] \Rightarrow \tau$: map f to a monotonic function in $\left(\sigma_{1}\right) \times \cdots \times\left(\sigma_{k}\right) \Rightarrow(\tau)$;
- prove that $\llbracket \ell \rrbracket>\llbracket r \rrbracket$ for all rules $\ell \rightarrow r$.

Higher-order tuple interpretations: an example

$$
\begin{aligned}
& \text { nil :: list } \\
& \text { cons } \quad:: \quad[\text { nat } \times \text { list }] \Rightarrow \text { list } \\
& \operatorname{map} \quad:: \quad[(\text { nat } \Rightarrow \text { nat }) \times \text { list }] \Rightarrow \text { list } \\
& \operatorname{map}(F, \text { nil }) \rightarrow \text { nil } \\
& \operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \operatorname{cons}(F \cdot x, \operatorname{map}(F, a))
\end{aligned}
$$

Higher-order tuple interpretations: an example

$$
\begin{gathered}
\text { nil }:: \quad \text { list } \\
\operatorname{cons}:: \quad[\text { nat } \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}:: \quad[(\text { nat } \Rightarrow \text { nat }) \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}(F, \text { nil }) \rightarrow \operatorname{nil} \\
\operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \operatorname{cons}(F \cdot x, \operatorname{map}(F, a))
\end{gathered}
$$

Semantics: (list) $=\langle$ cost, length, maximum \rangle

- \quad nil $\rrbracket=\langle 0,0,0\rangle$
- $\llbracket \operatorname{cons}(x, a) \rrbracket=\left\langle x_{\text {cost }}+a_{\text {cost }}, a_{\text {len }}+1, \max \left(x_{\text {size }}, a_{\text {max }}\right)\right\rangle$
- $\quad \llbracket \operatorname{map}(F, a) \rrbracket=\langle$ cost, length, maximum \rangle, where:
- length:
- maximum:
- cost:

Higher-order tuple interpretations: an example

$$
\begin{gathered}
\text { nil }:: \quad \text { list } \\
\operatorname{cons}:: \quad[\text { nat } \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}:: \quad[(\text { nat } \Rightarrow \text { nat }) \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}(F, \text { nil }) \rightarrow \operatorname{nil} \\
\operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \operatorname{cons}(F \cdot x, \operatorname{map}(F, a))
\end{gathered}
$$

Semantics: (list) $=\langle$ cost, length, maximum \rangle

- \quad nil $\rrbracket=\langle 0,0,0\rangle$
- $\llbracket \operatorname{cons}(x, a) \rrbracket=\left\langle x_{\text {cost }}+a_{\text {cost }}, a_{\text {len }}+1, \max \left(x_{\text {size }}, a_{\text {max }}\right)\right\rangle$
- $\quad \llbracket \operatorname{map}(F, a) \rrbracket=\langle$ cost, length, maximum \rangle, where:
- length: $a_{\text {len }}$
- maximum:
- cost:

Higher-order tuple interpretations: an example

$$
\begin{gathered}
\text { nil }:: \quad \text { list } \\
\operatorname{cons}:: \quad[\text { nat } \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}:: \quad[(\text { nat } \Rightarrow \text { nat }) \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}(F, \text { nil }) \rightarrow \operatorname{nil} \\
\operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \operatorname{cons}(F \cdot x, \operatorname{map}(F, a))
\end{gathered}
$$

Semantics: (list) $=\langle$ cost, length, maximum \rangle

- \quad nil $\rrbracket=\langle 0,0,0\rangle$
- $\llbracket \operatorname{cons}(x, a) \rrbracket=\left\langle x_{\text {cost }}+a_{\text {cost }}, a_{\text {len }}+1, \max \left(x_{\text {size }}, a_{\text {max }}\right)\right\rangle$
- $\quad \llbracket \operatorname{map}(F, a) \rrbracket=\langle$ cost, length, maximum \rangle, where:
- length: $a_{\text {len }}$
- maximum: $F\left(\left\langle a_{\text {cost }}, a_{\text {max }}\right\rangle\right)_{s}$
- cost:

Higher-order tuple interpretations: an example

$$
\begin{gathered}
\text { nil }:: \quad \text { list } \\
\operatorname{cons}:: \quad[\text { nat } \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}:: \quad[(\text { nat } \Rightarrow \text { nat }) \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}(F, \text { nil }) \rightarrow \operatorname{nil} \\
\operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \operatorname{cons}(F \cdot x, \operatorname{map}(F, a))
\end{gathered}
$$

Semantics: (list) $=\langle$ cost, length, maximum \rangle

- \quad nil $\rrbracket=\langle 0,0,0\rangle$
- $\llbracket \operatorname{cons}(x, a) \rrbracket=\left\langle x_{\text {cost }}+a_{\text {cost }}, a_{\text {len }}+1, \max \left(x_{\text {size }}, a_{\text {max }}\right)\right\rangle$
- $\quad \llbracket \operatorname{map}(F, a) \rrbracket=\langle$ cost, length, maximum \rangle, where:
- length: $a_{\text {len }}$
- maximum: $F\left(\left\langle a_{\text {cost }}, a_{\text {max }}\right\rangle\right)_{s}$
- cost: $\left(a_{\text {len }}+1\right) *\left(F\left(\left\langle a_{\text {cost }}, a_{\text {max }}\right\rangle\right)_{\text {cost }}+1\right)$

Higher-order tuple interpretations: an example

$$
\begin{gathered}
\text { nil }:: \quad \text { list } \\
\operatorname{cons}:: \quad[\text { nat } \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}:: \quad[(\text { nat } \Rightarrow \text { nat }) \times \text { list }] \Rightarrow \text { list } \\
\operatorname{map}(F, \text { nil }) \rightarrow \operatorname{nil} \\
\operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \operatorname{cons}(F \cdot x, \operatorname{map}(F, a))
\end{gathered}
$$

Semantics: (list) $=\langle$ cost, length, maximum \rangle

- $\quad \llbracket n i l \rrbracket=\langle 0,0,0\rangle$
- $\llbracket \operatorname{cons}(x, a) \rrbracket=\left\langle x_{\text {cost }}+a_{\text {cost }}, a_{\text {len }}+1, \max \left(x_{\text {size }}, a_{\text {max }}\right)\right\rangle$
- $\quad \llbracket \operatorname{map}(F, a) \rrbracket=\langle$ cost, length, maximum \rangle, where:
- length: $a_{\text {len }}$
- maximum: $F\left(\left\langle a_{\text {cost }}, a_{\text {max }}\right\rangle\right)_{s}$
- cost: $\left(a_{\text {len }}+1\right) *\left(F\left(\left\langle a_{\text {cost }}, a_{\text {max }}\right\rangle\right)_{\text {cost }}+1\right)$

Roughly: $\llbracket \operatorname{map} \rrbracket(F,\langle\text { cost, len, max }\rangle)_{\text {cost }} \approx$ len $* F(\langle\text { cost, max }\rangle)_{\text {cost }}$

Outline

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

Recall: runtime complexity

Runtime complexity:

$n \mapsto$ "maximum derivation height for a basic term of size n " Basic term: function(data, ..., data)
Example: mul $(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))), \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))))$

Recall: runtime complexity

Runtime complexity:

$n \mapsto$ "maximum derivation height for a basic term of size n " Basic term: function(data, ..., data)
Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))
Problem: does this make sense for higher-order rewriting?

Higher-order runtime complexity?

Runtime complexity:

$n \mapsto$ "maximum derivation height for a basic term of size n " Basic term: function(data, ..., data)

Higher-order runtime complexity?

Runtime complexity:

$n \mapsto$ "maximum derivation height for a basic term of size n " Basic term: function(data, ..., data)

- $\quad \operatorname{map}(\lambda x . s(x)$, some Ist)?

Higher-order runtime complexity?

Runtime complexity:

$n \mapsto$ "maximum derivation height for a basic term of size n " Basic term: function(data, ..., data)

- $\quad \operatorname{map}(\lambda x . s(x)$, some Ist)?
- $\quad f(\lambda x \cdot \operatorname{cons}(x, \operatorname{cons}(x, \operatorname{nil}))$, some data)?

Higher-order runtime complexity?

Runtime complexity:

$n \mapsto$ "maximum derivation height for a basic term of size n " Basic term: function(data, ..., data)

- $\quad \operatorname{map}(\lambda x . s(x)$, some Ist)?
- $\quad f(\lambda x \cdot \operatorname{cons}(x, \operatorname{cons}(x, \operatorname{nil}))$, some data)?

Choice: data must be a first-order constructor term.

Higher-order runtime complexity examples

$$
\begin{aligned}
& \operatorname{add}(0, y) \rightarrow y \\
& \operatorname{add}(\mathrm{~s}(x), y) \rightarrow \\
& \operatorname{add}(x, \mathrm{~s}(y)) \\
& \operatorname{map}(F, \operatorname{nil}) \rightarrow \\
& \operatorname{nil} \\
& \operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \\
& \operatorname{cons}(F \cdot x, \operatorname{map}(F, a))
\end{aligned}
$$

Terms of interest: $\operatorname{map}(\lambda y \cdot \operatorname{add}(s, y), t)$

Higher-order runtime complexity examples

$$
\begin{aligned}
& \operatorname{add}(0, y) \rightarrow y \\
& \operatorname{add}(\mathrm{~s}(x), y) \rightarrow \operatorname{add}(x, \mathrm{~s}(y)) \\
& \operatorname{map}(F, \mathrm{nil}) \rightarrow \operatorname{nil} \\
& \operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \operatorname{cons}(F \cdot x, \operatorname{map}(F, a)) \\
& \operatorname{start}(x, a) \rightarrow \\
& \operatorname{map}(\lambda y \cdot \operatorname{add}(x, y), a)
\end{aligned}
$$

Terms of interest: $\operatorname{map}(\lambda y \cdot \operatorname{add}(s, y), t)$

Higher-order runtime complexity examples

$$
\begin{aligned}
& \operatorname{add}(0, y) \rightarrow y \\
& \operatorname{add}(\mathrm{~s}(x), y) \rightarrow \\
& \operatorname{add}(x, \mathrm{~s}(y)) \\
& \operatorname{map}(F, \operatorname{nil}) \rightarrow \\
& \operatorname{nil} \\
& \operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \\
& \operatorname{cons}(F \cdot x, \operatorname{map}(F, a)) \\
& \operatorname{start}(x, a) \rightarrow \\
& \operatorname{map}(\lambda y \cdot \operatorname{add}(x, y), a)
\end{aligned}
$$

Terms of interest: $\operatorname{map}(\lambda y \cdot \operatorname{add}(s, y), t)$
Basic term: $\operatorname{start}\left(\mathrm{s}^{n}(0), \operatorname{cons}\left(\mathrm{s}^{a}(0), \operatorname{cons}\left(\mathrm{s}^{b}(0), \ldots, \operatorname{nil}\right)\right)\right)$

Higher-order runtime complexity examples

$$
\begin{aligned}
& \operatorname{add}(0, y) \rightarrow y \\
& \operatorname{add}(\mathrm{~s}(x), y) \rightarrow \\
& \operatorname{add}(x, \mathrm{~s}(y)) \\
& \operatorname{map}(F, \operatorname{nil}) \rightarrow \\
& \operatorname{nil} \\
& \operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \\
& \operatorname{cons}(F \cdot x, \operatorname{map}(F, a)) \\
& \operatorname{start}(x, a) \rightarrow \\
& \operatorname{map}(\lambda y \cdot \operatorname{add}(x, y), a)
\end{aligned}
$$

Terms of interest: $\operatorname{map}(\lambda y \cdot \operatorname{add}(s, y), t)$
Basic term: $\operatorname{start}\left(\mathrm{s}^{n}(0), \operatorname{cons}\left(\mathrm{s}^{a}(0), \operatorname{cons}\left(\mathrm{s}^{b}(0), \ldots, \operatorname{nil}\right)\right)\right)$
Runtime complexity: $n \mapsto \mathcal{O}\left(n^{2}\right)$

Higher-order runtime complexity examples

$$
\begin{aligned}
& \operatorname{add}(0, y) \rightarrow y \\
& \operatorname{add}(\mathrm{~s}(x), y) \rightarrow \\
& \operatorname{add}(x, \mathrm{~s}(y)) \\
& \operatorname{map}(F, \operatorname{nil}) \rightarrow \\
& \operatorname{nil} \\
& \operatorname{map}(F, \operatorname{cons}(x, a)) \rightarrow \\
& \operatorname{cons}(F \cdot x, \operatorname{map}(F, a)) \\
& \operatorname{start}(x, a) \rightarrow \\
& \operatorname{map}(\lambda y \cdot \operatorname{add}(x, y), a)
\end{aligned}
$$

Terms of interest: $\operatorname{map}(\lambda y \cdot \operatorname{add}(s, y), t)$
Basic term: $\operatorname{start}\left(\mathrm{s}^{n}(0), \operatorname{cons}\left(\mathrm{s}^{a}(0), \operatorname{cons}\left(\mathrm{s}^{b}(0), \ldots, \operatorname{nil}\right)\right)\right)$
Runtime complexity: $n \mapsto \mathcal{O}\left(n^{2}\right)$ (length of t^{*} size of s)

Heretofore...

- A simple idea: algebra interpretations with set $=\mathbb{N}^{p}$,

Heretofore...

- A simple idea: algebra interpretations with set $=\mathbb{N}^{p}$, - important usage: different sets for different sorts,

Heretofore...

- A simple idea: algebra interpretations with set $=\mathbb{N}^{p}$, - important usage: different sets for different sorts, - essentially: a generalization of matrix interpretations,

Heretofore...

- A simple idea: algebra interpretations with set $=\mathbb{N}^{p}$,
- important usage: different sets for different sorts,
- essentially: a generalization of matrix interpretations,
- runtime complexity still makes higher-order sense (somewhat)

Heretofore...

- A simple idea: algebra interpretations with set $=\mathbb{N}^{p}$,
- important usage: different sets for different sorts,
- essentially: a generalization of matrix interpretations,
- runtime complexity still makes higher-order sense (somewhat)
- a more expressive complexity notion?

Outline

Higher-order Feasibility

HO Rewriting and Tuple Interpretations

Runtime Complexity

BFFs Characterization

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- show that every BFF can be embedded as a TRS

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- we limit constructor symbols to additive interpretations

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- we limit constructor symbols to additive interpretations
- all defined symbols have polynomial bounded interpretations

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- we limit constructor symbols to additive interpretations
- all defined symbols have polynomial bounded interpretations
- we add an infinite number of extra function symbols f to represent the calls to ORACLES

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- we limit constructor symbols to additive interpretations
- all defined symbols have polynomial bounded interpretations
- we add an infinite number of extra function symbols f to represent the calls to ORACLES
- the cost int. of each oracle call is 1 and the size is polynomially bounded

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- show that every BFF can be embedded as a TRS
- $\quad \mathrm{BLP}_{2}$ is a second order imperative stateful programming language

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- show that every BFF can be embedded as a TRS
- $\quad \mathrm{BLP}_{2}$ is a second order imperative stateful programming language
- a functional is in BFF iff it can be computed by a BLP_{2} program

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- show that every BFF can be embedded as a TRS
- $\quad \mathrm{BLP}_{2}$ is a second order imperative stateful programming language
- a functional is in BFF iff it can be computed by a BLP_{2} program
- we then show that all BLP_{2} programs can be computed by second order TRSs with polynomial interpretations

Overview

- tuple interpretations allow us to split computation information into different cost and size components

Overview

- tuple interpretations allow us to split computation information into different cost and size components
- this ability allowed us to properly model oracle calls and bound their costs

Overview

- tuple interpretations allow us to split computation information into different cost and size components
- this ability allowed us to properly model oracle calls and bound their costs
- it adds expressivity to the complexity measure

Overview

- tuple interpretations allow us to split computation information into different cost and size components
- this ability allowed us to properly model oracle calls and bound their costs
- it adds expressivity to the complexity measure
- we can implicitly capture higher-order Feasibility!

Overview

- tuple interpretations allow us to split computation information into different cost and size components
- this ability allowed us to properly model oracle calls and bound their costs
- it adds expressivity to the complexity measure
- we can implicitly capture higher-order Feasibility!
- it is very interesting!

Overview

- tuple interpretations allow us to split computation information into different cost and size components
- this ability allowed us to properly model oracle calls and bound their costs
- it adds expressivity to the complexity measure
- we can implicitly capture higher-order Feasibility!
- it is very interesting!

Overview

- tuple interpretations allow us to split computation information into different cost and size components
- this ability allowed us to properly model oracle calls and bound their costs
- it adds expressivity to the complexity measure
- we can implicitly capture higher-order Feasibility!
- it is very interesting!

Thank you!

BFFs extra definitions

Definition

Given a functional F we say that

- $\quad F$ is defined from H, G_{1}, \ldots, G_{l} by functional composition if for all \vec{f} and \vec{x},

$$
F(\vec{f}, \vec{x})=H\left(\vec{f}, G_{1}(\vec{f}, \vec{x}), \ldots, G_{l}(\vec{f}, \vec{x})\right) .
$$

- F is defined from G by expansion if for all $\vec{f}, \vec{g}, \vec{x}$, and \vec{y},

$$
F(\vec{f}, \vec{g}, \vec{x}, \vec{y})=G(\vec{f}, \vec{x}) .
$$

More than matrix and polynomial interpretations!

$$
\begin{aligned}
\operatorname{minus}(x, 0) & \rightarrow x \\
\text { minus }(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \operatorname{minus}(x, y) \\
\text { quot }(0, \mathrm{~s}(y)) & \rightarrow 0 \\
\text { quot }(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{s}(\text { quot(minus }(x, y), \mathrm{s}(y)))
\end{aligned}
$$

More than matrix and polynomial interpretations!

$$
\begin{aligned}
\operatorname{minus}(x, 0) & \rightarrow x \\
\text { minus }(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \operatorname{minus}(x, y) \\
\text { quot }(0, \mathrm{~s}(y)) & \rightarrow 0 \\
\text { quot }(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{s}(\text { quot(minus }(x, y), \mathrm{s}(y)))
\end{aligned}
$$

- Cannot be done with polynomial interpretations, since always $\llbracket \operatorname{minus}(x, y) \rrbracket \geq \llbracket y \rrbracket$.

More than matrix and polynomial interpretations!

$$
\begin{aligned}
\operatorname{minus}(x, 0) & \rightarrow x \\
\text { minus }(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \operatorname{minus}(x, y) \\
\text { quot }(0, \mathrm{~s}(y)) & \rightarrow 0 \\
\text { quot }(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{s}(\text { quot(minus }(x, y), \mathrm{s}(y)))
\end{aligned}
$$

- Cannot be done with polynomial interpretations, since always $\llbracket \operatorname{minus}(x, y) \rrbracket \geq \llbracket y \rrbracket$.
- Cannot be done with matrix interpretations due to duplication of y.

More than matrix and polynomial interpretations!

$$
\begin{aligned}
\operatorname{minus}(x, 0) & \rightarrow x \\
\text { minus }(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \operatorname{minus}(x, y) \\
\text { quot }(0, \mathrm{~s}(y)) & \rightarrow 0 \\
\text { quot }(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{s}(\text { quot(minus }(x, y), \mathrm{s}(y)))
\end{aligned}
$$

- Cannot be done with polynomial interpretations, since always $\llbracket \operatorname{minus}(x, y) \rrbracket \geq \llbracket y \rrbracket$.
- Cannot be done with matrix interpretations due to duplication of y.
- Can be done with tuple interpretations!

$$
\begin{aligned}
\llbracket 0 \rrbracket= & \langle 0,0\rangle \\
\llbracket \mathrm{s}(x) \rrbracket= & \left\langle x_{\text {cost }}, x_{\text {size }}+1\right\rangle \\
\llbracket \operatorname{minus}(x, y) \rrbracket= & \left\langle x_{\text {cost }}+y_{\text {cost }}+y_{\text {size }}+1, x_{\text {size }}\right\rangle \\
\llbracket \text { quot }(x, y) \rrbracket= & \left\langle x_{\text {cost }}+y_{\text {cost }}+x_{\text {size }}+x_{\text {size }} *\left(y_{\text {size }}+y_{\text {cost }}\right)+1,\right. \\
& \left.x_{\text {size }}\right\rangle
\end{aligned}
$$

Some other examples

$$
\begin{aligned}
\text { filter }(F, \text { nil }) & \rightarrow \text { nil } \\
\text { filter }(F, \operatorname{cons}(x, a)) & \rightarrow \operatorname{consif}(F \cdot x, x, \text { filter }(F, a)) \\
\text { consif(true, } x, a) & \rightarrow \operatorname{cons}(x, a) \\
\text { consif }(f a l s e, x, a) & \rightarrow a
\end{aligned}
$$

Cost: $1+\left(a_{\text {len }}+1\right) *\left(2+a_{\text {cost }}+F\left(\left\langle a_{\text {cost }}, a_{\text {max }}\right\rangle\right)_{\text {cost }}\right)$

Some other examples

```
    filter(F,nil) }->\mathrm{ nil
filter(F,cons(x,a)) }->\mathrm{ consif(F.x,x,filter(F,a))
    consif(true, x,a) }->\mathrm{ cons( }x,a
    consif(false, x,a) }->\mathrm{ a
```

Cost: $1+\left(a_{\text {len }}+1\right) *\left(2+a_{\text {cost }}+F\left(\left\langle a_{\text {cost }}, a_{\text {max }}\right\rangle\right)_{\text {cost }}\right)$

Roughly:

\llbracket filter $\rrbracket(F,\langle\text { cost, len, } \max \rangle)_{\mathrm{cost}} \approx$ len $* F(\langle\operatorname{cost}, \max \rangle)_{\mathrm{cost}}+$ len $* \operatorname{cost}$

Some other examples

```
    filter(F,nil) }->\mathrm{ nil
filter(F,cons(x,a)) }->\mathrm{ consif(F.x,x,filter(F,a))
    consif(true, x,a) }->\mathrm{ cons( }x,a
    consif(false, x,a) }->\mathrm{ a
```

Cost: $1+\left(a_{\text {len }}+1\right) *\left(2+a_{\text {cost }}+F\left(\left\langle a_{\text {cost }}, a_{\text {max }}\right\rangle\right)_{\text {cost }}\right)$
Roughly:
\llbracket filter $\rrbracket(F,\langle\operatorname{cost} \text {, len, } \max \rangle)_{\text {cost }} \approx \underbrace{\text { len } * F(\langle\operatorname{cost}, \max \rangle)_{\text {cost }}}_{\text {map-like component! }}+$ len $* \operatorname{cost}$

Some other examples

$$
\begin{aligned}
\operatorname{rec}(0, y, F) & \rightarrow y \\
\operatorname{rec}(\mathrm{~s}(x), y, F) & \rightarrow F \cdot x \cdot \operatorname{rec}(x, y, F)
\end{aligned}
$$

Cost: Helper $[x, F]^{x_{\text {len }}+1}\left(\left\langle 1+y_{\text {cost }}, y_{\text {size }}\right\rangle\right)$ where Helper $[x, F]=z \mapsto\left\langle F(x, z)_{\text {cost }}, \max \left(z_{\text {size }}, F(x, z)_{\text {size }}\right)\right\rangle$

Some other examples

$$
\begin{aligned}
\operatorname{rec}(0, y, F) & \rightarrow y \\
\operatorname{rec}(\mathrm{~s}(x), y, F) & \rightarrow F \cdot x \cdot \operatorname{rec}(x, y, F)
\end{aligned}
$$

Cost: Helper $[x, F]^{x_{\text {len }}+1}\left(\left\langle 1+y_{\text {cost }}, y_{\text {size }}\right\rangle\right)$ where Helper $[x, F]=z \mapsto\left\langle F(x, z)_{\text {cost }}, \max \left(z_{\text {size }}, F(x, z)_{\text {size }}\right)\right\rangle$

Roughly: $\llbracket r e c \rrbracket(\langle\operatorname{cost}$, size $\rangle, y, F) \approx$
$(z \mapsto F(\langle\operatorname{cost}, \text { size }\rangle, z))^{\text {size }}(x)$.

Some other examples

$$
\begin{aligned}
\operatorname{rec}(0, y, F) & \rightarrow y \\
\operatorname{rec}(\mathrm{~s}(x), y, F) & \rightarrow F \cdot x \cdot \operatorname{rec}(x, y, F)
\end{aligned}
$$

Cost: Helper $[x, F]^{x_{\text {len }}+1}\left(\left\langle 1+y_{\text {cost }}, y_{\text {size }}\right\rangle\right)$ where Helper $[x, F]=z \mapsto\left\langle F(x, z)_{\text {cost }}, \max \left(z_{\text {size }}, F(x, z)_{\text {size }}\right)\right\rangle$

Roughly: $\llbracket r e c \rrbracket(\langle\operatorname{cost}$, size $\rangle, y, F) \approx$
$(z \mapsto F(\langle\operatorname{cost}, \text { size }\rangle, z))^{\text {size }}(x)$.
Compare: $\llbracket f \circ 1 d \rrbracket(F, x,\langle$ cost, len, max $\rangle) \approx$ $(z \mapsto F(z,\langle\operatorname{cost}, \max \rangle))^{\text {len }}(x)$.

Some other examples

$$
\begin{aligned}
& \operatorname{der}(\lambda x \cdot y) \rightarrow \lambda z \cdot 0 \\
& \operatorname{der}(\lambda x \cdot x) \rightarrow \lambda z \cdot o n e \\
& \operatorname{der}(\lambda x \cdot \sin (x)) \rightarrow \lambda z \cdot \cos (z) \\
& \operatorname{der}(\lambda x \cdot \cos (x)) \rightarrow \lambda z \cdot \operatorname{minus}(\sin (z)) \\
& \operatorname{der}(\lambda x \cdot \operatorname{plus}(F \cdot x, G \cdot x)) \rightarrow \lambda z \cdot \operatorname{plus}(\operatorname{der}(F) \cdot z, \operatorname{der}(G) \cdot z) \\
& \operatorname{der}(\lambda x \cdot \operatorname{times}(F \cdot x, G \cdot x)) \rightarrow \lambda z \cdot \operatorname{plus}(\operatorname{times}(\operatorname{der}(F) \cdot z, G \cdot z), \\
& \\
&\operatorname{times}(F \cdot z, \operatorname{der}(G) \cdot z)) \\
& \operatorname{der}(\lambda x \cdot \ln (F \cdot x)) \rightarrow \lambda z \cdot \operatorname{div}(\operatorname{der}(F) \cdot z, F \cdot z)
\end{aligned}
$$

Cost of $\operatorname{der}(F, z): 1+F(z)_{\text {cost }}+2 * F(z)_{\text {size }}+F(z)_{\text {ndif }} * F(z)_{\text {cost }}$ $\approx F(z)_{\text {ndif }} * F(z)_{\text {cost }}$

Thank you!

