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Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N= N¥xN =N
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Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for functionals of type:

(N= N¥xN =N
This problem has been studied since the 70's.
Why this problem is interesting?
®  most tasks considered feasible are in P

®  most tasks outside of P seems quite infeasible

®  almost all reasonable models of deterministic computation are
polynomially related

®  both P and PF have good closure properties
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Basic Feasible Functionals (BFFs)

Good candidate? Let's bring... BFFs

they are...
®  second order functionals (Type-2)
®  can be captured by type-2 limited recursion on notation

®  can be computed in terms of OTM in polynomial time
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Basic Feasible Functionals (BFFs)

The BFF recursive scheme.

F is defined from G, H, and K by limited recursion on notation (LRN) if
for all f,)’(’ and vy,

F(f_-',)_(’,O) = G( 7)?)
F(f,%,y) = H(f,%,y, F(f,%, [x/2])),y > 0,
|F(F,%,y)| < |K(F, %, )|

Definition

The class BFF is the smallest class of functionals containing FPTIME and
the application functional (AFx.F(x)), and closed under: composition,
expansion, and LRN.
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Goal

Our goal is to characterize BFFs via higher-order rewriting and tuple
interpretations.
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HO Rewriting and Tuple Interpretations
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Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols
and rules.
®  abstraction and application
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Higher-Order Rewriting

Basic Idea: A form of typed lambda-calculus with function symbols
and rules.
®  abstraction and application

®  function symbols with arity:

nil :: list cons :: nat X list=>natlist
map : (nat=>nat) X list==list

®  variables of higher-order type.
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Strongly monotonic functionals in a nutshell

General idea:
e for every base type i: let (1) = NPl for some p[i];

® say (m,...,np) > (m,...,mp) if 1 > my and each n; > m;;

® for each symbol £ : [o1 X --- X 0] = 7: map £ to a monotonic
function in (o1) x --- x (ok) = (7);
®  prove that [¢] > [r] for all rules £ — r.
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e for every base type i: let (1) = NPl for some p[i];

® say (m,...,np) > (m,...,mp) if 1 > my and each n; > m;;

e  for every arrow type o = 7: let (¢ = 7)) = { monotonic functions
from (o) to (7) }

o say f>gif f(x) > g(x) for all x

®  for each symbol £ : [o1 X --- X 0k] = 7: map £ to a monotonic
function in (o1) x --- x (ok) = (7);

®  prove that [¢] > [r] for all rules £ — r.
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Higher-order tuple interpretations: an example

nil = list
cons : [nat x list] = list
map : [(nat = nat) x list] = list

map(F,nil) — nil
map(F, cons(x,a)) — cons(F - x,map(F,a))
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Higher-order tuple interpretations: an example

nil = list
cons : [nat x list] = list
map : [(nat = nat) x list] = list

map(F,nil) — nil
map(F, cons(x,a)) — cons(F - x,map(F,a))

Semantics: (list) = (cost, length, maximum)
¢ [nil] =(0,0,0)
b [[COI’IS(X, a)]] = <Xcost + acost, Alen + 1, maX(Xsize7 amax)>
® [map(F,a)] = (cost,length, maximum), where:

—  length: ajn

- maximum: F( (acost; dmax) )s

- cost: (alen + 1) * (F( <acost7 amax> )cost + 1)
Roughly: [map](F, (cost,len, max))cost 2 len * F({cost, max))cost
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Runtime Complexity
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Recall: runtime complexity

Runtime complexity:
n — “maximum derivation height for a basic term of size n"
Basic term: function(data,...,data)

Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))
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Recall: runtime complexity

Runtime complexity:
n — “maximum derivation height for a basic term of size n”
Basic term: function(data,...,data)

Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

Problem: does this make sense for higher-order rewriting?
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Higher-order runtime complexity?

Runtime complexity:
n — “maximum derivation height for a basic term of size n"
Basic term: function(data,...,data)

®  map(Ax.s(x),some Ist)?
e f(Ax.cons(x, cons(x,nil)),some data)?
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Higher-order runtime complexity?

Runtime complexity:
n — “maximum derivation height for a basic term of size n"
Basic term: function(data,...,data)

®  map(Ax.s(x),some Ist)?
e f(Ax.cons(x, cons(x,nil)),some data)?

Choice: data must be a first-order constructor term.
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Higher-order runtime complexity examples

add(0,y) — y
add(s(x),y) — add(x,s(y))
map(F,nil) — nil
map(F,cons(x,a)) — cons(F - x,map(F, a))

Terms of interest: map(\y.add(s,y), t)
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Higher-order runtime complexity examples

add(0, y y
add(s(x), y add(x, s(y))
nil

cons(F - x,map(F, a))
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LLlld
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Higher-order runtime complexity examples

add(0,y) — y
add(s(x),y) — add(x,s(y))
map(F,nil) — nil
map(F,cons(x,a)) — cons(F - x,map(F, a))
start(x,a) — map(\y.add(x,y),a

Terms of interest: map(\y.add(s, y), t)

Basic term: start(s"(0), cons(s?(0), cons(s®(0),...,nil)))
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Higher-order runtime complexity examples

add(0,y) — y
add(s(x),y) — add(x,s(y))
map(F,nil) — nil
map(F,cons(x,a)) — cons(F - x,map(F, a))
start(x,a) — map(\y.add(x,y),a

Terms of interest: map(\y.add(s, y), t)
Basic term: start(s"(0), cons(s?(0), cons(s®(0),...,nil)))

Runtime complexity: n+— O(n?) (length of t * size of s)
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Heretofore...

® A simple idea: algebra interpretations with set = NP,

® important usage: different sets for different sorts,

®  essentially: a generalization of matrix interpretations,

®  runtime complexity still makes higher-order sense (somewhat)

® 3 more expressive complexity notion?
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BFFs Characterization
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How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

®  show that every TRS satisfying certain conditions represent a BFF
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How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

®  show that every TRS satisfying certain conditions represent a
BFF

—  we limit constructor symbols to additive interpretations

— all defined symbols have polynomial bounded interpretations

— we add an infinite number of extra function symbols f to
represent the calls to ORACLES

—  the cost int. of each oracle call is 1 and the size is polynomially
bounded
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How to characterize BFFs by Rewriting?
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How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

®  show that every TRS satisfying certain conditions represent a BFF
®  show that every BFF can be embedded as a TRS
—  BLP, is a second order imperative stateful programming
language
— a functional is in BFF iff it can be computed by a BLP, program
—  we then show that all BLP, programs can be computed by
second order TRSs with polynomial interpretations
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Overview

® tuple interpretations allow us to split computation information into
different cost and size components

®  this ability allowed us to properly model oracle calls and bound their
costs

® it adds expressivity to the complexity measure
e we can implicitly capture higher-order Feasibility!
® it is very interesting!

Thank you!
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BFFs extra definitions

Definition

Given a functional F we say that

® [ is defined from H, Gy, ..., G, by functional composition if for all f
and X,

F(f,%) = H(f, Gy(F, %), ..., G/(f,%)).

®  Fis defined from G by expansion if for all £ g, X, and y,

—

F(f.&,%,7) = G(f,X).
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More than matrix and polynomial interpretations!

minus(x,0) —
minus(s(x),s(y)) — minus(x,y)
quot(0,s(y)) — O
quot(s(x),s(y)) — s(quot(minus(x,y),s(y)))

X
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More than matrix and polynomial interpretations!

minus(x,0) — x
minus(s(x),s(y)) — minus(x,y)
quot(0,s(y)) — O
quot(s(x),s(y)) — s(quot(minus(x,y),s(y)))

e (Cannot be done with polynomial interpretations, since always
[minus(x,y)] = [y].
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More than matrix and polynomial interpretations!

minus(x,0) — x
minus(s(x),s(y)) — minus(x,y)
quot(0,s(y)) — O
quot(s(x),s(y)) — s(quot(minus(x,y),s(y)))
e (Cannot be done with polynomial interpretations, since always
[minus(x,y)] = [y].

®  Cannot be done with matrix interpretations due to duplication of y.
®  (Can be done with tuple interpretations!

[o] = (0,0)
[[S(X)]] = <XCOSt7 Xsize + 1>
[[minus(x, Y)]] = <Xcost + Yeost + Ysize + 1, Xsize>
[quOt(Xa y)]] = <Xcost + Yecost + Xsize + Xsize * (}/size + }/cost) + 17
Xsize>
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Some other examples

filter(F,nil) — nil
filter(F,cons(x,a)) — consif(F-x,x,filter(F,a))
consif(true,x,a) — cons(x,a)
consif(false,x,a) — a

Cost: 1+ (alen + 1) * (2 + Acost + F(<aCOSt7 amax>)cost)
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Some other examples

filter(F,nil)
filter(F, cons(x, a))
consif(true,x, a)
consif(false,x, a)

L4l

nil

consif(F - x,x,filter(F,a))
cons(x, a)

a

Cost: 1+ (alen + 1) * (2 + Acost + F(<3COSt7 amax>)cost)

Roughly:

[filter](F, (cost, len, max))cost = len x F({cost, max))cost + len * cost
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Some other examples

filter(F,nil)
filter(F, cons(x, a))
consif(true,x, a)
consif(false,x, a)

L4l

nil

consif(F - x,x,filter(F,a))
cons(x, a)

a

Cost: 1+ (alen + 1) * (2 + Acost + F(<3COSt7 amax>)cost)

Roughly:

[filter](F, (cost, len, max))cost = len x F({cost, max))cost +len * cost

map-like component!
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Some other examples

rec(0,y,F) — y
rec(s(x),y,F) — F-x-rec(x,y,F)

Cost: Helper[x, F]¥en ({1 + yeost, Ysize)) Where
Helper[x, F] = z = ( F(X,Z)cost, Max(Zsize, F(X,2)size) )
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rec(s(x),y,F) — F-x-rec(x,y,F)

Cost: Helper[x, F]¥en ({1 + yeost, Ysize)) Where
Helper[x, F] = z = ( F(X,Z)cost, Max(Zsize, F(X,2)size) )

Roughly: [rec]((cost,size),y, F) ~
(z — F({cost,size), z))**¢(x).
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Some other examples

rec(0,y,F) — y
rec(s(x),y,F) — F-x-rec(x,y,F)

Cost: Helper[x, F]¥en ({1 + yeost, Ysize)) Where
Helper[x, F] = z = ( F(X,Z)cost, Max(Zsize, F(X,2)size) )

Roughly: [rec]((cost,size),y, F) ~
(z — F({cost,size), z))**¢(x).

Compare: [fold](F,x, (cost,len, max)) ~
(z — F(z, {cost, max)))'"(x).
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Some other examples

der(Ax.y)
der(Ax.x)
der(Ax.sin(x))
der(Ax.cos(x))
der(Ax.plus(F - x, G - x))
der(Ax.times(F - x, G - x))

der(Ax.1n(F - x))

Ll Ll

_>

Az.0

Az.one

Az.cos(z)

Az.minus(sin(z))

Az.plus(der(F) - z,der(G) - z)

Az.plus(times(der(F) -z,G -z
times(F - z,der(G) -

Az.div(der(F) -z, F - z)

),
z))

Cost of der(F,z): 14 F(2)cost + 2 * F(2)size + F(2)ndif * F(2)cost

~ F(Z)ndif * F(Z)cost
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Thank you!
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