The paint pot problem and common multiples in monoids

Hans Zantema

Eindhoven University of Technology and Radboud University Nijmegen

TeReSe, June 8, 2022

The paint pot problem

Finite sequence of paint pots, with the following steps:

Finite sequence of paint pots, with the following steps:

- Swap two consecutive non-empty pots

The paint pot problem

Finite sequence of paint pots, with the following steps:

- Swap two consecutive non-empty pots

- If the two neighbours of a non-empty pot are empty, then divide the paint in the middle pot over the two neighbours, after which these neighbours will be non-empty and the middle one will be empty

The paint pot problem

Finite sequence of paint pots, with the following steps:

- Swap two consecutive non-empty pots

- If the two neighbours of a non-empty pot are empty, then divide the paint in the middle pot over the two neighbours, after which these neighbours will be non-empty and the middle one will be empty

Also reverse allowed:

The paint pot problem

Finite sequence of paint pots, with the following steps:

- Swap two consecutive non-empty pots

- If the two neighbours of a non-empty pot are empty, then divide the paint in the middle pot over the two neighbours, after which these neighbours will be non-empty and the middle one will be empty

Also reverse allowed:

Is it possible to start by a sequence in which the first four pots contain paint in four different colors, and get the first pot empty?

The paint pot problem, formally

Denote a for an empty pot and b, c, d, e for the initial first four pots

Denote a for an empty pot and b, c, d, e for the initial first four pots

Possibly more colors do not affect the problem and will be ignored

Denote a for an empty pot and b, c, d, e for the initial first four pots

Possibly more colors do not affect the problem and will be ignored
Let E consist of the equations

Denote a for an empty pot and b, c, d, e for the initial first four pots

Possibly more colors do not affect the problem and will be ignored
Let E consist of the equations

$$
p q=q p \quad \text { for all } p, q \in\{b, c, d, e\}, p \neq q
$$

Denote a for an empty pot and b, c, d, e for the initial first four pots

Possibly more colors do not affect the problem and will be ignored
Let E consist of the equations

$$
\begin{aligned}
p q & =q p & \text { for all } p, q \in\{b, c, d, e\}, p \neq q \\
a p a & =p a p & \text { for all } p \in\{b, c, d, e\}
\end{aligned}
$$

Denote a for an empty pot and b, c, d, e for the initial first four pots

Possibly more colors do not affect the problem and will be ignored
Let E consist of the equations

$$
\begin{array}{rlrl}
p q & =q p & \text { for all } p, q \in\{b, c, d, e\}, p \neq q \\
a p a & =p a p & & \text { for all } p \in\{b, c, d, e\}
\end{array}
$$

Question:

Denote a for an empty pot and b, c, d, e for the initial first four pots

Possibly more colors do not affect the problem and will be ignored
Let E consist of the equations

$$
\begin{array}{rlrl}
p q & =q p & \text { for all } p, q \in\{b, c, d, e\}, p \neq q \\
a p a & =p a p & & \text { for all } p \in\{b, c, d, e\}
\end{array}
$$

Question:
Do words x, y exist such that bcdex $=E$ ay ?

More general, the set of words = strings over a finite alphabet modulo a set of equations is called a (finitely generated) monoid, with concatenation as operation and the empty word as unit element

More general, the set of words = strings over a finite alphabet modulo a set of equations is called a (finitely generated) monoid, with concatenation as operation and the empty word as unit element

If a monoid also has inverses, then it is called a group

More general, the set of words = strings over a finite alphabet modulo a set of equations is called a (finitely generated) monoid, with concatenation as operation and the empty word as unit element

If a monoid also has inverses, then it is called a group
Groups and monoids are key topics in algebra, and have been studied very extensively

More general, the set of words = strings over a finite alphabet modulo a set of equations is called a (finitely generated) monoid, with concatenation as operation and the empty word as unit element

If a monoid also has inverses, then it is called a group
Groups and monoids are key topics in algebra, and have been studied very extensively

In a monoid two words u, v are said to have common right multiples if words x, y exist such that $u x={ }_{E} v y$

More general, the set of words = strings over a finite alphabet modulo a set of equations is called a (finitely generated) monoid, with concatenation as operation and the empty word as unit element

If a monoid also has inverses, then it is called a group
Groups and monoids are key topics in algebra, and have been studied very extensively

In a monoid two words u, v are said to have common right multiples if words x, y exist such that $u x={ }_{E} v y$

So the paint pot problem asks whether a particular monoid satisfies this property for the words bcde and a

Relation to confluence

Relation to confluence

Define the relation pref by

$$
u \text { pref } v \Longleftrightarrow \exists x: u x=v
$$

Relation to confluence

Define the relation pref by

$$
u \text { pref } v \Longleftrightarrow \exists x: u x=v
$$

Then by definition any two strings have common right multiples if and only if $=_{E} \cup$ pref is confluent

Relation to confluence

Define the relation pref by

$$
u \text { pref } v \Longleftrightarrow \exists x: u x=v
$$

Then by definition any two strings have common right multiples if and only if $=_{E} \cup$ pref is confluent
$=E \cup$ pref is not a rewrite relation, but by adding a fresh symbol \triangleright we get that any two strings have common right multiples if and only if the string rewrite system

$$
\{\triangleright \rightarrow a \triangleright \mid a \in \Sigma\} \cup E \cup E^{-1}
$$

is confluent

Relation to confluence

Define the relation pref by

$$
u \text { pref } v \Longleftrightarrow \exists x: u x=v
$$

Then by definition any two strings have common right multiples if and only if $=_{E} \cup$ pref is confluent
$=_{E} \cup$ pref is not a rewrite relation, but by adding a fresh symbol \triangleright we get that any two strings have common right multiples if and only if the string rewrite system

$$
\{\triangleright \rightarrow a \triangleright \mid a \in \Sigma\} \cup E \cup E^{-1}
$$

is confluent
Unfortunately, all confluence tools fail for proving or disproving confluence for this system for the paint pot problem and variants

The answer on the paint pot question will be 'no' as we will see

The answer on the paint pot question will be 'no' as we will see
For 3 colors the answer is 'yes'

The answer on the paint pot question will be 'no' as we will see
For 3 colors the answer is 'yes'
Here the equations are
$a b a=b a b, a c a=c a c, a d a=d a d, b c=c b, b d=d b, c d=d c$

The answer on the paint pot question will be 'no' as we will see
For 3 colors the answer is 'yes'
Here the equations are

$$
a b a=b a b, a c a=c a c, a d a=d a d, b c=c b, b d=d b, c d=d c
$$ and the smallest solution is

$$
\begin{aligned}
& \text { bcdadcabacda }=\text { bcadacabacda }=\text { bcadcacbacda } \\
& =\text { bcadcabcacda }=\text { bcadcabacada }=\text { bcadcabacdad } \\
& =\text { bcadcbabcdad }=\text { bcacdbabcdad }=\text { bacadbabcdad } \\
& =\text { bacabdabcdad }=\text { bacabdabdcad }=\text { bacabdadbcad } \\
& =\text { bacabadabcad }=\text { bacbabdabcad }=\underline{\text { babbabdabcad }} \\
& =\text { abacabdabcad }
\end{aligned}
$$

Define a model to be a set $M \neq \emptyset$, together with a mapping $a_{M}: M \rightarrow M$ for every symbol a

Define a model to be a set $M \neq \emptyset$, together with a mapping $a_{M}: M \rightarrow M$ for every symbol a

For a word $w=w_{1} w_{2} \ldots w_{n}$ and a model M define $w_{M}: M \rightarrow M$ by $w_{M}(m)=w_{1 M}\left(w_{2 M}\left(\cdots\left(w_{n M}(m)\right) \cdots\right)\right)$

Define a model to be a set $M \neq \emptyset$, together with a mapping $a_{M}: M \rightarrow M$ for every symbol a

For a word $w=w_{1} w_{2} \ldots w_{n}$ and a model M define $w_{M}: M \rightarrow M$ by $w_{M}(m)=w_{1 M}\left(w_{2 M}\left(\cdots\left(w_{n M}(m)\right) \cdots\right)\right)$

The model M is said to be a model for a set of equations E if $v_{M}(m)=w_{M}(m)$ for all $m \in M$ and all $v=w \in E$

Define a model to be a set $M \neq \emptyset$, together with a mapping $a_{M}: M \rightarrow M$ for every symbol a

For a word $w=w_{1} w_{2} \ldots w_{n}$ and a model M define $w_{M}: M \rightarrow M$ by $w_{M}(m)=w_{1 M}\left(w_{2 M}\left(\cdots\left(w_{n M}(m)\right) \cdots\right)\right)$

The model M is said to be a model for a set of equations E if $v_{M}(m)=w_{M}(m)$ for all $m \in M$ and all $v=w \in E$

Theorem

For words u, v there are no x, y satisfying $u x=E v y$ if and only if there exists a model M for E such that

$$
\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset
$$

Theorem

For words u, v there are no x, y satisfying $u x=E v y$ if and only if there exists a model M for E such that

$$
\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset
$$

Theorem

For words u, v there are no x, y satisfying $u x=E v y$ if and only if there exists a model M for E such that

$$
\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset
$$

Proof:

Theorem

For words u, v there are no x, y satisfying $u x=E v y$ if and only if there exists a model M for E such that

$$
\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset
$$

Proof:

If such a model exists then
$\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset$ implies that the interpretation of $u x$ and $v y$ applied on any element of M are always distinct, hence $u x=E$ vy does not hold

Theorem

For words u, v there are no x, y satisfying $u x=E v y$ if and only if there exists a model M for E such that

$$
\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset
$$

Proof:
If such a model exists then
$\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset$ implies that the interpretation of $u x$ and $v y$ applied on any element of M are always distinct, hence $u x=E$ vy does not hold

Conversely, if there are no x, y satisfying $u x=E$ vy a corresponding model can be constructed just consisting of strings modulo $=_{E} \square$

Theorem

For words u, v there are no x, y satisfying $u x=E v y$ if and only if there exists a model M for E such that

$$
\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset
$$

Proof:
If such a model exists then
$\left\{u_{M}(m) \mid m \in M\right\} \cap\left\{v_{M}(m) \mid m \in M\right\}=\emptyset$ implies that the interpretation of $u x$ and $v y$ applied on any element of M are always distinct, hence $u x=E$ vy does not hold

Conversely, if there are no x, y satisfying $u x=E$ vy a corresponding model can be constructed just consisting of strings modulo $=E \square$

Remark: this proof is very similar to the equivalence of termination and the existence of a monotone algebra that I proved in my very first TERESE talk in January 1991

Solution for the paint pot problem:

Solution for the paint pot problem:
Choose the model $M=\{1,2,3,4,5,6,7,8\}$, in which $p_{M}(i)=j$ if there is a p-arrow from i to j and $p_{M}(i)=i$ otherwise

Solution for the paint pot problem:
Choose the model $M=\{1,2,3,4,5,6,7,8\}$, in which $p_{M}(i)=j$ if there is a p-arrow from i to j and $p_{M}(i)=i$ otherwise

Check that $u_{M}(m)=v_{M}(m)$ for all equations $u=v$ and all $m \in M$,

Solution for the paint pot problem:
Choose the model $M=\{1,2,3,4,5,6,7,8\}$, in which $p_{M}(i)=j$ if there is a p-arrow from i to j and $p_{M}(i)=i$ otherwise

Check that $u_{M}(m)=v_{M}(m)$ for all equations $u=v$ and all $m \in M$, for instance:
$d_{M}\left(e_{M}(6)\right)=1=e_{M}\left(d_{M}(6)\right)$
$b_{M}\left(e_{M}(6)\right)=8=e_{M}\left(b_{M}(6)\right)$
$b_{M}\left(c_{M}(7)\right)=7=c_{M}\left(b_{M}(7)\right)$

Solution for the paint pot problem:
Choose the model $M=\{1,2,3,4,5,6,7,8\}$, in which $p_{M}(i)=j$ if there is a p-arrow from i to j and $p_{M}(i)=i$ otherwise

Check that $u_{M}(m)=v_{M}(m)$ for all equations $u=v$ and all $m \in M$, for instance:
$d_{M}\left(e_{M}(6)\right)=1=e_{M}\left(d_{M}(6)\right) \quad a_{M}\left(b_{M}\left(a_{M}(1)\right)\right)=3=b_{M}\left(a_{M}\left(b_{M}(1)\right)\right)$
$b_{M}\left(e_{M}(6)\right)=8=e_{M}\left(b_{M}(6)\right) \quad a_{M}\left(d_{M}\left(a_{M}(8)\right)\right)=2=d_{M}\left(a_{M}\left(d_{M}(8)\right)\right)$
$b_{M}\left(c_{M}(7)\right)=7=c_{M}\left(b_{M}(7)\right) \quad a_{M}\left(c_{M}\left(a_{M}(6)\right)\right)=6=c_{M}\left(a_{M}\left(c_{M}(6)\right)\right)$

It remains to check that the interpretations in M of $a x$ and bcdey are always distinct

It remains to check that the interpretations in M of $a x$ and bcdey are always distinct

It remains to check that the interpretations in M of $a x$ and bcdey are always distinct

We compute

$$
\begin{gathered}
\left\{b_{M}\left(c_{M}\left(d_{M}\left(e_{M}(m)\right)\right)\right) \mid m \in M\right\}=\{1,5\} \\
\left\{a_{M}(m) \mid m \in M\right\}=\{2,3,4,6,7,8\}
\end{gathered}
$$

It remains to check that the interpretations in M of $a x$ and $b c d e y$ are always distinct

We compute

$$
\begin{gathered}
\left\{b_{M}\left(c_{M}\left(d_{M}\left(e_{M}(m)\right)\right)\right) \mid m \in M\right\}=\{1,5\} \\
\left\{a_{M}(m) \mid m \in M\right\}=\{2,3,4,6,7,8\}
\end{gathered}
$$

indeed disjoint

This proof was found by looking for a finite model with n elements for $n=2,3,4, \ldots$, and expressing the requirements in an SMT formula, until for $n=8$ the formula was satisfiable, and the satisfying assignment yielded the given solution

Generalization to graphs

Generalization to graphs

For an undirected graph identify the nodes with symbols, and for any two nodes a, b give the equation $a b a=b a b$ if they are connected by an edge, and $a b=b a$ if not

Generalization to graphs

For an undirected graph identify the nodes with symbols, and for any two nodes a, b give the equation $a b a=b a b$ if they are connected by an edge, and $a b=b a$ if not

A question posed by Jan Willem Klop is: for which graphs every two words have a common right multiple?

Generalization to graphs

For an undirected graph identify the nodes with symbols, and for any two nodes a, b give the equation $a b a=b a b$ if they are connected by an edge, and $a b=b a$ if not

A question posed by Jan Willem Klop is: for which graphs every two words have a common right multiple?

His first conjecture was that this holds iff the graph is acyclic, but this was contradicted by our paint pot problem, since that corresponds to the graph

For the graph consisting of a single path, the corresponding monoid is called a braid monoid

For the graph consisting of a single path, the corresponding monoid is called a braid monoid

Braids consist of strands, that may be twisted

For the graph consisting of a single path, the corresponding monoid is called a braid monoid

Braids consist of strands, that may be twisted
Our symbols represent pairs of consecutive strands

For the graph consisting of a single path, the corresponding monoid is called a braid monoid

Braids consist of strands, that may be twisted
Our symbols represent pairs of consecutive strands

For the graph consisting of a single path, the corresponding monoid is called a braid monoid

Braids consist of strands, that may be twisted
Our symbols represent pairs of consecutive strands

equivalent to

For the graph consisting of a single path, the corresponding monoid is called a braid monoid

Braids consist of strands, that may be twisted
Our symbols represent pairs of consecutive strands

equivalent to

So we get exactly our equations $a b a=b a b$ for consecutive symbols, and $a b=b a$ for the others

These braids were extensively studied by Artin in the 1940's

These braids were extensively studied by Artin in the 1940's
It was proven by Garside in 1967 that in this monoid every two words have a common right multiple

These braids were extensively studied by Artin in the 1940's
It was proven by Garside in 1967 that in this monoid every two words have a common right multiple

This was the basis of a huge amount of follow up research, leading to the book Foundations of Garside theory of over 700 pages by Dehornoy et al in 2015

These braids were extensively studied by Artin in the 1940's
It was proven by Garside in 1967 that in this monoid every two words have a common right multiple

This was the basis of a huge amount of follow up research, leading to the book Foundations of Garside theory of over 700 pages by Dehornoy et al in 2015

Positive results, so proving that common right multiples do exist, are obtained by constructing a special word Δ

These braids were extensively studied by Artin in the 1940's
It was proven by Garside in 1967 that in this monoid every two words have a common right multiple

This was the basis of a huge amount of follow up research, leading to the book Foundations of Garside theory of over 700 pages by Dehornoy et al in 2015

Positive results, so proving that common right multiples do exist, are obtained by constructing a special word Δ

Our criteria for Δ do not coincide with the standard theory, but are simpler in our view

Definition

A word Δ is called init flexible if for every symbol a there exists a word y such that $\Delta=E$ ay

Definition

A word Δ is called init flexible if for every symbol a there exists a word y such that $\Delta=E$ ay

A word Δ is called rotation flexible if for every symbol a there exists a word y such that $a \Delta=E \Delta y$

Definition

A word Δ is called init flexible if for every symbol a there exists a word y such that $\Delta=E$ ay

A word Δ is called rotation flexible if for every symbol a there exists a word y such that $a \Delta=E \Delta y$

Theorem

Let Δ be both init flexible and rotation flexible
Then every u, v have common right multiples, that is, x, y exist with $u x=E v y$

For many examples we systematically find an init flexible word Δ and check that it is rotation flexible, hence proving that every u, v have common right multiples

For many examples we systematically find an init flexible word Δ and check that it is rotation flexible, hence proving that every u, v have common right multiples

The hardest one is

For many examples we systematically find an init flexible word Δ and check that it is rotation flexible, hence proving that every u, v have common right multiples

The hardest one is

yielding
$\Delta=a b a c a b d a b c a d e b a d c a b e f c a b e d a b c a f c d a b e g f c a b e d a b c a f c g f d a c b a e$ bdacfghgfcadbacfghebacfgdacfbacdabebadcabfcagfchgfdacbaebdacfgh of length 120

Our technique to find such a Δ is based on tiling, which turns out to be pure string rewriting over the alphabet in which for each symbol a its capital A is added

Our technique to find such a Δ is based on tiling, which turns out to be pure string rewriting over the alphabet in which for each symbol a its capital A is added

Define $R=R_{E}$ to consist of the following rewrite rules:

- $A a \rightarrow \epsilon$ for all $a \in \Sigma$, and
- $B a \rightarrow v U$ and $A b \rightarrow u V$ for all equations $a u=b v$ in E

Our technique to find such a Δ is based on tiling, which turns out to be pure string rewriting over the alphabet in which for each symbol a its capital A is added

Define $R=R_{E}$ to consist of the following rewrite rules:

- Aa $\rightarrow \epsilon$ for all $a \in \Sigma$, and
- $B a \rightarrow v U$ and $A b \rightarrow u V$ for all equations $a u=b v$ in E

Theorem

Assume that for every $a \neq b$ there is exactly one equation of the shape $a u=b v$ or $b v=a u$ in E, and E contains only these rules

Our technique to find such a Δ is based on tiling, which turns out to be pure string rewriting over the alphabet in which for each symbol a its capital A is added

Define $R=R_{E}$ to consist of the following rewrite rules:

- Aa $\rightarrow \epsilon$ for all $a \in \Sigma$, and
- $B a \rightarrow v U$ and $A b \rightarrow u V$ for all equations $a u=b v$ in E

Theorem

Assume that for every $a \neq b$ there is exactly one equation of the shape $a u=b v$ or $b v=a u$ in E, and E contains only these rules If $V u \rightarrow_{R}^{*} y X$ then $u x=E v y$

Our technique to find such a Δ is based on tiling, which turns out to be pure string rewriting over the alphabet in which for each symbol a its capital A is added

Define $R=R_{E}$ to consist of the following rewrite rules:

- $A a \rightarrow \epsilon$ for all $a \in \Sigma$, and
- $B a \rightarrow v U$ and $A b \rightarrow u V$ for all equations $a u=b v$ in E

Theorem

Assume that for every $a \neq b$ there is exactly one equation of the shape $a u=b v$ or $b v=a u$ in E, and E contains only these rules

If $V u \rightarrow_{R}^{*} y X$ then $u x=E v y$

So common right multiples for u and v are found by rewriting $V u$ to normal form

Example:

$a b a=b a b, a c a=c a c, a d a=d a d, b c=c b, b d=d b, c d=d c$ yields

$A a$	$\rightarrow \epsilon$	$B a$	\rightarrow	$a b A B$	$C a$	\rightarrow	$a c A C$	$D a$	\rightarrow
$a d A D$									
$A b$	\rightarrow	$b a B A$	$B b$	\rightarrow	ϵ	$C b$	\rightarrow	$b C$	$D b$

Example:

$a b a=b a b, a c a=c a c, a d a=d a d, b c=c b, b d=d b, c d=d c$ yields

$A a$	$\rightarrow \epsilon$	$B a$	\rightarrow	$a b A B$	$C a$	$\rightarrow a c A C$	$D a$	\rightarrow	$a d A D$
$A b$	\rightarrow	$b a B A$	$B b$	\rightarrow	ϵ	$C b$	\rightarrow	$b C$	$D b$

Common right multiple for c and $a b a$ is found by rewriting Caba to acbacBAC, so cacbac $=e$ abacab

Example:
$a b a=b a b, a c a=c a c, a d a=d a d, b c=c b, b d=d b, c d=d c$ yields

$A a$	\rightarrow	ϵ	$B a$	\rightarrow	$a b A B$	Ca	\rightarrow	acAC	Da	\rightarrow	adAD
$A b$	\rightarrow	baBA	$B b$	\rightarrow	ϵ	$C b$	\rightarrow	$b C$	Db	\rightarrow	$b D$
Ac	\rightarrow	caCA	Bc	\rightarrow	$c B$	Cc	\rightarrow	ϵ	Dc	\rightarrow	$c D$
Ad	\rightarrow	da $D A$	$B d$	\rightarrow	$d B$	Cd	\rightarrow	$d C$	Dd	\rightarrow	ϵ,

Common right multiple for c and $a b a$ is found by rewriting Caba to acbacBAC, so cacbac $=E$ abacab Tiling:

We found a nearly complete characterization for Jan Willem Klop's question

We found a nearly complete characterization for Jan Willem Klop's question

This work, with a contribution of Vincent van Oostrom, was submitted to FSCD 2022

We found a nearly complete characterization for Jan Willem Klop's question

This work, with a contribution of Vincent van Oostrom, was submitted to FSCD 2022

Unfortunately, one reviewer remarked that our main result was already known: common right multiples in these monoids is equivalent to finiteness of Coxeter groups, which was already fully classified by Coxeter in 1935

We found a nearly complete characterization for Jan Willem Klop's question

This work, with a contribution of Vincent van Oostrom, was submitted to FSCD 2022

Unfortunately, one reviewer remarked that our main result was already known: common right multiples in these monoids is equivalent to finiteness of Coxeter groups, which was already fully classified by Coxeter in 1935

Mixed feelings: a pity that the paper was rejected, but scientifically very nice that our main question turned out to be equivalent to a natural question from geometry that seems to be unrelated

Conclusions

Conclusions

Unclear what to do with this work now

Conclusions

Unclear what to do with this work now
Our approach of disproving common right multiples by finding a model is new, and completely different from existing techniques

Conclusions

Unclear what to do with this work now
Our approach of disproving common right multiples by finding a model is new, and completely different from existing techniques

The paint pot problem is a nice and hard puzzle in itself, and its solution is an instance of this new approach

