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The paint pot problem

Finite sequence of paint pots, with the following steps:

Swap two consecutive non-empty pots

If the two neighbours of a non-empty pot are empty, then
divide the paint in the middle pot over the two neighbours,
after which these neighbours will be non-empty and the
middle one will be empty

Also reverse allowed:

Is it possible to start by a sequence in which the first four pots
contain paint in four different colors, and get the first pot empty?
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The paint pot problem, formally

Denote a for an empty pot and b, c, d , e for the initial first four
pots

Possibly more colors do not affect the problem and will be ignored

Let E consist of the equations

pq = qp for all p, q ∈ {b, c , d , e}, p ̸= q
apa = pap for all p ∈ {b, c , d , e}

Question:

Do words x , y exist such that bcdex =E ay ?
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More general, the set of words = strings over a finite alphabet
modulo a set of equations is called a (finitely generated) monoid,
with concatenation as operation and the empty word as unit
element

If a monoid also has inverses, then it is called a group

Groups and monoids are key topics in algebra, and have been
studied very extensively

In a monoid two words u, v are said to have common right
multiples if words x , y exist such that ux =E vy

So the paint pot problem asks whether a particular monoid
satisfies this property for the words bcde and a
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Relation to confluence

Define the relation pref by

u pref v ⇐⇒ ∃x : ux = v

Then by definition any two strings have common right multiples if
and only if =E ∪ pref is confluent

=E ∪ pref is not a rewrite relation, but by adding a fresh symbol
▷ we get that any two strings have common right multiples if and
only if the string rewrite system

{▷ → a▷ | a ∈ Σ} ∪ E ∪ E−1

is confluent

Unfortunately, all confluence tools fail for proving or disproving
confluence for this system for the paint pot problem and variants
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The answer on the paint pot question will be ’no’ as we will see

For 3 colors the answer is ’yes’

Here the equations are

aba = bab, aca = cac , ada = dad , bc = cb, bd = db, cd = dc

and the smallest solution is

bcdadcabacda = bcadacabacda = bcadcacbacda
= bcadcabcacda = bcadcabacada = bcadcabacdad
= bcadcbabcdad = bcacdbabcdad = bacadbabcdad
= bacabdabcdad = bacabdabdcad = bacabdadbcad
= bacabadabcad = bacbabdabcad = babcabdabcad
= abacabdabcad

Hans Zantema The paint pot problem and common multiples in monoids



The answer on the paint pot question will be ’no’ as we will see

For 3 colors the answer is ’yes’

Here the equations are

aba = bab, aca = cac , ada = dad , bc = cb, bd = db, cd = dc

and the smallest solution is

bcdadcabacda = bcadacabacda = bcadcacbacda
= bcadcabcacda = bcadcabacada = bcadcabacdad
= bcadcbabcdad = bcacdbabcdad = bacadbabcdad
= bacabdabcdad = bacabdabdcad = bacabdadbcad
= bacabadabcad = bacbabdabcad = babcabdabcad
= abacabdabcad

Hans Zantema The paint pot problem and common multiples in monoids



The answer on the paint pot question will be ’no’ as we will see

For 3 colors the answer is ’yes’

Here the equations are

aba = bab, aca = cac , ada = dad , bc = cb, bd = db, cd = dc

and the smallest solution is

bcdadcabacda = bcadacabacda = bcadcacbacda
= bcadcabcacda = bcadcabacada = bcadcabacdad
= bcadcbabcdad = bcacdbabcdad = bacadbabcdad
= bacabdabcdad = bacabdabdcad = bacabdadbcad
= bacabadabcad = bacbabdabcad = babcabdabcad
= abacabdabcad

Hans Zantema The paint pot problem and common multiples in monoids



The answer on the paint pot question will be ’no’ as we will see

For 3 colors the answer is ’yes’

Here the equations are

aba = bab, aca = cac , ada = dad , bc = cb, bd = db, cd = dc

and the smallest solution is

bcdadcabacda = bcadacabacda = bcadcacbacda
= bcadcabcacda = bcadcabacada = bcadcabacdad
= bcadcbabcdad = bcacdbabcdad = bacadbabcdad
= bacabdabcdad = bacabdabdcad = bacabdadbcad
= bacabadabcad = bacbabdabcad = babcabdabcad
= abacabdabcad

Hans Zantema The paint pot problem and common multiples in monoids



Define a model to be a set M ̸= ∅, together with a mapping
aM : M → M for every symbol a

For a word w = w1w2 . . .wn and a model M define wM : M → M
by wM(m) = w1M(w2M(· · · (wnM(m)) · · · ))

The model M is said to be a model for a set of equations E if
vM(m) = wM(m) for all m ∈ M and all v = w ∈ E

Theorem

For words u, v there are no x , y satisfying ux =E vy if and only if
there exists a model M for E such that

{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅
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Theorem

For words u, v there are no x , y satisfying ux =E vy if and only if
there exists a model M for E such that

{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅

Proof:

If such a model exists then
{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅ implies that the
interpretation of ux and vy applied on any element of M are
always distinct, hence ux =E vy does not hold

Conversely, if there are no x , y satisfying ux =E vy a corresponding
model can be constructed just consisting of strings modulo =E □

Remark: this proof is very similar to the equivalence of termination
and the existence of a monotone algebra that I proved in my very
first TERESE talk in January 1991

Hans Zantema The paint pot problem and common multiples in monoids



Theorem

For words u, v there are no x , y satisfying ux =E vy if and only if
there exists a model M for E such that

{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅

Proof:

If such a model exists then
{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅ implies that the
interpretation of ux and vy applied on any element of M are
always distinct, hence ux =E vy does not hold

Conversely, if there are no x , y satisfying ux =E vy a corresponding
model can be constructed just consisting of strings modulo =E □

Remark: this proof is very similar to the equivalence of termination
and the existence of a monotone algebra that I proved in my very
first TERESE talk in January 1991

Hans Zantema The paint pot problem and common multiples in monoids



Theorem

For words u, v there are no x , y satisfying ux =E vy if and only if
there exists a model M for E such that

{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅

Proof:

If such a model exists then
{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅ implies that the
interpretation of ux and vy applied on any element of M are
always distinct, hence ux =E vy does not hold

Conversely, if there are no x , y satisfying ux =E vy a corresponding
model can be constructed just consisting of strings modulo =E □

Remark: this proof is very similar to the equivalence of termination
and the existence of a monotone algebra that I proved in my very
first TERESE talk in January 1991

Hans Zantema The paint pot problem and common multiples in monoids



Theorem

For words u, v there are no x , y satisfying ux =E vy if and only if
there exists a model M for E such that

{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅

Proof:

If such a model exists then
{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅ implies that the
interpretation of ux and vy applied on any element of M are
always distinct, hence ux =E vy does not hold

Conversely, if there are no x , y satisfying ux =E vy a corresponding
model can be constructed just consisting of strings modulo =E □

Remark: this proof is very similar to the equivalence of termination
and the existence of a monotone algebra that I proved in my very
first TERESE talk in January 1991

Hans Zantema The paint pot problem and common multiples in monoids



Theorem

For words u, v there are no x , y satisfying ux =E vy if and only if
there exists a model M for E such that

{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅

Proof:

If such a model exists then
{uM(m) | m ∈ M} ∩ {vM(m) | m ∈ M} = ∅ implies that the
interpretation of ux and vy applied on any element of M are
always distinct, hence ux =E vy does not hold

Conversely, if there are no x , y satisfying ux =E vy a corresponding
model can be constructed just consisting of strings modulo =E □

Remark: this proof is very similar to the equivalence of termination
and the existence of a monotone algebra that I proved in my very
first TERESE talk in January 1991

Hans Zantema The paint pot problem and common multiples in monoids



Solution for the paint pot problem:

Choose the model M = {1, 2, 3, 4, 5, 6, 7, 8}, in which pM(i) = j if
there is a p-arrow from i to j and pM(i) = i otherwise

1 2

3 4

56

7 8

a

b c

c b
a

d e

e d

Check that uM(m) = vM(m) for all equations u = v and all
m ∈ M, for instance:
dM(eM(6)) = 1 = eM(dM(6))
bM(eM(6)) = 8 = eM(bM(6))
bM(cM(7)) = 7 = cM(bM(7))

aM(bM(aM(1))) = 3 = bM(aM(bM(1)))
aM(dM(aM(8))) = 2 = dM(aM(dM(8)))
aM(cM(aM(6))) = 6 = cM(aM(cM(6)))
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It remains to check that the interpretations in M of ax and bcdey
are always distinct

1 2

3 4

56

7 8

a

b c

c b
a

d e

e d

We compute

{bM(cM(dM(eM(m)))) | m ∈ M} = {1, 5}

{aM(m) | m ∈ M} = {2, 3, 4, 6, 7, 8}

indeed disjoint
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This proof was found by looking for a finite model with n elements
for n = 2, 3, 4, . . ., and expressing the requirements in an SMT
formula, until for n = 8 the formula was satisfiable, and the
satisfying assignment yielded the given solution
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Generalization to graphs

For an undirected graph identify the nodes with symbols, and for
any two nodes a, b give the equation aba = bab if they are
connected by an edge, and ab = ba if not

A question posed by Jan Willem Klop is: for which graphs every
two words have a common right multiple?

His first conjecture was that this holds iff the graph is acyclic, but
this was contradicted by our paint pot problem, since that
corresponds to the graph

a

b c

de
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For the graph consisting of a single path, the corresponding
monoid is called a braid monoid

Braids consist of strands, that may be twisted

Our symbols represent pairs of consecutive strands

So we get exactly our equations aba = bab for consecutive
symbols, and ab = ba for the others
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These braids were extensively studied by Artin in the 1940’s

It was proven by Garside in 1967 that in this monoid every two
words have a common right multiple

This was the basis of a huge amount of follow up research, leading
to the book Foundations of Garside theory of over 700 pages by
Dehornoy et al in 2015

Positive results, so proving that common right multiples do exist,
are obtained by constructing a special word ∆

Our criteria for ∆ do not coincide with the standard theory, but
are simpler in our view
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Definition

A word ∆ is called init flexible if for every symbol a there exists a
word y such that ∆ =E ay

A word ∆ is called rotation flexible if for every symbol a there
exists a word y such that a∆ =E ∆y

Theorem

Let ∆ be both init flexible and rotation flexible
Then every u, v have common right multiples, that is, x , y exist
with ux =E vy
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For many examples we systematically find an init flexible word ∆
and check that it is rotation flexible, hence proving that every u, v
have common right multiples

The hardest one is

ab

d

ce f g h

yielding

∆ = abacabdabcadebadcabefcabedabcafcdabegfcabedabcafcgfdacbae

bdacfghgfcadbacfghebacfgdacfbacdabebadcabfcagfchgfdacbaebdacfgh

of length 120
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Our technique to find such a ∆ is based on tiling, which turns out
to be pure string rewriting over the alphabet in which for each
symbol a its capital A is added

Define R = RE to consist of the following rewrite rules:

Aa → ϵ for all a ∈ Σ, and

Ba → vU and Ab → uV for all equations au = bv in E

Theorem

Assume that for every a ̸= b there is exactly one equation of the
shape au = bv or bv = au in E , and E contains only these rules

If Vu →∗
R yX then ux =E vy

So common right multiples for u and v are found by rewriting Vu
to normal form

Hans Zantema The paint pot problem and common multiples in monoids



Our technique to find such a ∆ is based on tiling, which turns out
to be pure string rewriting over the alphabet in which for each
symbol a its capital A is added

Define R = RE to consist of the following rewrite rules:

Aa → ϵ for all a ∈ Σ, and

Ba → vU and Ab → uV for all equations au = bv in E

Theorem

Assume that for every a ̸= b there is exactly one equation of the
shape au = bv or bv = au in E , and E contains only these rules

If Vu →∗
R yX then ux =E vy

So common right multiples for u and v are found by rewriting Vu
to normal form

Hans Zantema The paint pot problem and common multiples in monoids



Our technique to find such a ∆ is based on tiling, which turns out
to be pure string rewriting over the alphabet in which for each
symbol a its capital A is added

Define R = RE to consist of the following rewrite rules:

Aa → ϵ for all a ∈ Σ, and

Ba → vU and Ab → uV for all equations au = bv in E

Theorem

Assume that for every a ̸= b there is exactly one equation of the
shape au = bv or bv = au in E , and E contains only these rules

If Vu →∗
R yX then ux =E vy

So common right multiples for u and v are found by rewriting Vu
to normal form

Hans Zantema The paint pot problem and common multiples in monoids



Our technique to find such a ∆ is based on tiling, which turns out
to be pure string rewriting over the alphabet in which for each
symbol a its capital A is added

Define R = RE to consist of the following rewrite rules:

Aa → ϵ for all a ∈ Σ, and

Ba → vU and Ab → uV for all equations au = bv in E

Theorem

Assume that for every a ̸= b there is exactly one equation of the
shape au = bv or bv = au in E , and E contains only these rules

If Vu →∗
R yX then ux =E vy

So common right multiples for u and v are found by rewriting Vu
to normal form

Hans Zantema The paint pot problem and common multiples in monoids



Our technique to find such a ∆ is based on tiling, which turns out
to be pure string rewriting over the alphabet in which for each
symbol a its capital A is added

Define R = RE to consist of the following rewrite rules:

Aa → ϵ for all a ∈ Σ, and

Ba → vU and Ab → uV for all equations au = bv in E

Theorem

Assume that for every a ̸= b there is exactly one equation of the
shape au = bv or bv = au in E , and E contains only these rules

If Vu →∗
R yX then ux =E vy

So common right multiples for u and v are found by rewriting Vu
to normal form

Hans Zantema The paint pot problem and common multiples in monoids



Example:
aba = bab, aca = cac , ada = dad , bc = cb, bd = db, cd = dc
yields

Aa → ϵ Ba → abAB Ca → acAC Da → adAD
Ab → baBA Bb → ϵ Cb → bC Db → bD
Ac → caCA Bc → cB Cc → ϵ Dc → cD
Ad → daDA Bd → dB Cd → dC Dd → ϵ,

Common right multiple for c and aba is found by rewriting Caba to
acbacBAC , so cacbac =E abacab Tiling:

a b a

c

c c
c

a

a
a

b

ϵ
b

b a c

ϵ

a c b a c
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We found a nearly complete characterization for Jan Willem Klop’s
question

This work, with a contribution of Vincent van Oostrom, was
submitted to FSCD 2022

Unfortunately, one reviewer remarked that our main result was
already known: common right multiples in these monoids is
equivalent to finiteness of Coxeter groups, which was already fully
classified by Coxeter in 1935

Mixed feelings: a pity that the paper was rejected, but scientifically
very nice that our main question turned out to be equivalent to a
natural question from geometry that seems to be unrelated
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Conclusions

Unclear what to do with this work now

Our approach of disproving common right multiples by finding a
model is new, and completely different from existing techniques

The paint pot problem is a nice and hard puzzle in itself, and its
solution is an instance of this new approach
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