Termination by Tiling with PBPO⁺ (work in progress)

Roy Overbeek joint work with Jörg Endrullis 8 June 2022, **TeReSe seminar**

Vrije Universiteit Amsterdam, The Netherlands

This Talk in a Nutshell

there are many flavours of graphs

- \implies so having an abstract (graph) rewriting mechanism is useful
- \implies PBPO⁺ is such a mechanism, and it is expressive

This Talk in a Nutshell

there are many flavours of graphs

- \implies so having an abstract (graph) rewriting mechanism is useful
- \implies PBPO⁺ is such a mechanism, and it is expressive

termination is interesting for all flavours of rewriting

 \implies we developed a termination method in an abstract setting for ${\rm PBPO^+}$

What is a Graph?

Termination 00000 Conclusion O

Graph Rewriting: Replacement in Context

Example rule: "Find an occurrence of

in a graph, and delete it."

Termination 00000 Conclusion O

Graph Rewriting: Replacement in Context

Example rule: "Find an occurrence of

in a graph, and delete it."

Problem:

What should happen with the red edges?

Algebraic Graph Transformation

Algebraic Graph Transformation: research field since the 70s.

Idea: use category theory to specify graph transformations abstractly.

Algebraic Graph Transformation

Algebraic Graph Transformation: research field since the 70s.

Idea: use category theory to specify graph transformations abstractly.

Example formalisms:

• ...

- Double-Pushout (DPO) [Ehrig et al., 1973]
- Single-Pushout (SPO) [Löwe, 1993]
- Sesqui-Pushout (SqPO) [A.Corradini et al., 2006]
- AGREE [Corradini et al., 2015]
- Pullback-Pushout (PBPO) [Corradini et al., 2017]
- Pullback-Pushout plus Strong Matching (PBPO⁺) [Overbeek et al., 2021]

Algebraic Graph Transformation

Algebraic Graph Transformation: research field since the 70s.

Idea: use category theory to specify graph transformations abstractly.

Example formalisms:

- Double-Pushout (DPO) [Ehrig et al., 1973]
- Single-Pushout (SPO) [Löwe, 1993]
- Sesqui-Pushout (SqPO) [A.Corradini et al., 2006]
- AGREE [Corradini et al., 2015]
- Pullback-Pushout (PBPO) [Corradini et al., 2017]
- Pullback-Pushout plus Strong Matching (PBPO⁺) [Overbeek et al., 2021]

• ...

Different frameworks

- use different constructions;
- handle replacement in context differently; and
- make different assumptions about the underlying category.

Termination 00000 Conclusion O

Construction #1: Pushout

Termination 00000 Conclusion O

Construction #1: Pushout

Termination 00000 Conclusion O

Construction #1: Pushout

Termination 00000 Conclusion O

Construction #1: Pushout

Construction #1: Pushout

Construction #1: Pushout

Rule ρ: "identify nodes *a* and *b*, and add a node *c*":

Think of a pushout as a gluing construction or a fibered union.

Introduction O Termination 00000 Conclusion O

Construction #2: Pullback

The dual of a pushout is a pullback:

Conclusion O

Construction #2: Pullback

The **dual** of a pushout is a **pullback**:

Conclusion O

Construction #2: Pullback

The dual of a pushout is a pullback:

Construction #2: Pullback

The dual of a pushout is a pullback:

Think of a pullback as a **fibered product** or as a **generalized intersection**.

Construction #2: Pullback

The dual of a pushout is a pullback:

Think of a pullback as a **fibered product** or as a **generalized intersection**. Pullbacks can be used to specify **duplication** and **deletion**.

PBPO⁺: Pullback-Pushout plus Strong Matching

PBPO⁺: Pullback-Pushout plus Strong Matching

Definition (PBPO⁺ Step [Corradini et al., 2017, Overbeek et al., 2021]) A step $G_L \Rightarrow G_R$ is given by:

PBPO⁺: Pullback-Pushout plus Strong Matching

Definition (PBPO⁺ Step [Corradini et al., 2017, Overbeek et al., 2021]) A step $G_L \Rightarrow G_R$ is given by:

Allows application conditions, deleting, cloning, adding, merging, ...

Conclusion O

Not All Categories Are Created Equal

For arbitrary categories:

• POs and PBs may not always exist.

Not All Categories Are Created Equal

For arbitrary categories:

- POs and PBs may not always exist.
- Properties of, and interactions between, POs and PBs may differ.

Not All Categories Are Created Equal

For arbitrary categories:

- POs and PBs may not always exist.
- Properties of, and interactions between, POs and PBs may differ.

• There may or may not be auxiliary objects and constructions for rewriting or analysis.

Not All Categories Are Created Equal

For arbitrary categories:

- POs and PBs may not always exist.
- Properties of, and interactions between, POs and PBs may differ.

• There may or may not be auxiliary objects and constructions for rewriting or analysis.

For this reason, there is a taxonomy of classes of categories in the literature.

Taxonomy

Recent Subsumption Result

Definition (Modeling)

A graph rewriting framework \mathcal{F} is modeled by \mathcal{G} , denoted $\mathcal{F} \prec \mathcal{G}$, if

$$\forall \rho \in \operatorname{rules}(\mathfrak{F}). \ \exists \sigma \in \operatorname{rules}(\mathfrak{G}). \ \Rightarrow_{\rho}^{\mathfrak{F}} = \ \Rightarrow_{\sigma}^{\mathfrak{G}}.$$

Recent Subsumption Result

Definition (Modeling)

A graph rewriting framework \mathcal{F} is modeled by \mathcal{G} , denoted $\mathcal{F} \prec \mathcal{G}$, if

```
\forall \rho \in \operatorname{rules}(\mathfrak{F}). \ \exists \sigma \in \operatorname{rules}(\mathfrak{G}). \ \Rightarrow^{\mathfrak{F}}_{\rho} = \ \Rightarrow^{\mathfrak{G}}_{\sigma}.
```

Theorem ([Overbeek et al., 2022])

In any quasitopos, using regular monic matches m:

Recent Subsumption Result

Definition (Modeling)

A graph rewriting framework \mathcal{F} is modeled by \mathcal{G} , denoted $\mathcal{F} \prec \mathcal{G}$, if

```
\forall \rho \in \operatorname{rules}(\mathfrak{F}). \ \exists \sigma \in \operatorname{rules}(\mathfrak{G}). \ \Rightarrow^{\mathfrak{F}}_{\rho} = \ \Rightarrow^{\mathfrak{G}}_{\sigma}.
```

Theorem ([Overbeek et al., 2022])

In any quasitopos, using regular monic matches m:

Preprint under review, available on arXiv:

Overbeek, R., Endrullis, J., and Rosset, A. (2022). Graph rewriting and relabeling with PBPO+: A unifying theory for quasitoposes.

CoRR, abs/2203.01032

Termination by Tiling

Contribution: Termination by Tiling for PBPO⁺ in categories satisfying "certain assumptions".

Termination by Tiling

Contribution: Termination by Tiling for PBPO⁺ in categories satisfying "certain assumptions".

Natural setting for assumptions: finitary rm-adhesive quasitoposes.

Includes the category of finite directed multigraphs.

Termination by Tiling

Contribution: Termination by Tiling for PBPO⁺ in categories satisfying "certain assumptions".

Natural setting for assumptions: finitary rm-adhesive quasitoposes.

Includes the category of finite directed multigraphs.

Because of our subsumption result, this yields also a termination method for SqPO, DPO, AGREE, and PBPO rules in this setting.

Termination 00000 Conclusion O

Termination by Tiling

Set of weighted tiles (T, w):

Termination 00000

Termination by Tiling

Set of weighted tiles (T, w):

Weight of a graph is the heaviest injective, non-overlapping tiling possible:

Termination 00000

Termination by Tiling

Set of weighted tiles (T, w):

Weight of a graph is the heaviest injective, non-overlapping tiling possible:

Proposition (Termination by Tiling)

A rewrite system **R** is terminating if \exists (\mathbb{T} , **w**) such that \forall steps $G_L \Rightarrow_{\mathbf{R}} G_R$. $\mathbf{w}(G_L) > \mathbf{w}(G_R)$.

Termination

Termination 00000

Termination 00000

Termination 00000

Termination 00000

Intuitive Idea

Graph Rewriting

Termination 00000

R GR 6ر = R = 3 ٨D Ali typed typed = R' = Ø

Termination 00000

Termination 00000

Intuitive Idea

Theorem

Given a rule ρ , and some assumptions on the category and the rule.

Suppose that for **every** tiling of R (where tiles may stick out into the environment typing and become deformed), the reconstruction of L + the transferred fragments glued around it admits a heavier tiling.

Then ρ is terminating.

This method must be further relaxed!

Termination 00000

Abstract Picture

Related Work

Main point of comparison:

Bruggink, H. J. S., König, B., Nolte, D., and H. Zantema (2015). Proving termination of graph transformation systems using weighted type graphs over semirings.

In Proc. Conf. on Graph Transformation (ICGT15), LNCS. Springer

Related Work

Main point of comparison:

Bruggink, H. J. S., König, B., Nolte, D., and H. Zantema (2015). Proving termination of graph transformation systems using weighted type graphs over semirings.

In Proc. Conf. on Graph Transformation (ICGT15), LNCS. Springer

A method for framework DPO, in the category of edge-labeled graphs Graph.

Related Work

Main point of comparison:

Bruggink, H. J. S., König, B., Nolte, D., and H. Zantema (2015). Proving termination of graph transformation systems using weighted type graphs over semirings.

In Proc. Conf. on Graph Transformation (ICGT15), LNCS. Springer

A method for framework DPO, in the category of edge-labeled graphs Graph.

Fundamentally different approach: count the number of ways in which a graph can be typed.

Related Work

Main point of comparison:

Bruggink, H. J. S., König, B., Nolte, D., and H. Zantema (2015). Proving termination of graph transformation systems using weighted type graphs over semirings.

In Proc. Conf. on Graph Transformation (ICGT15), LNCS. Springer

A method for framework DPO, in the category of edge-labeled graphs Graph.

Fundamentally different approach: count the number of ways in which a graph can be typed.

Methods can be compared:

- encode a DPO rule as its PBPO⁺ equivalent (possible by subsumption)
- instantiate our method for Graph

Related Work

Main point of comparison:

Bruggink, H. J. S., König, B., Nolte, D., and H. Zantema (2015). Proving termination of graph transformation systems using weighted type graphs over semirings.

In Proc. Conf. on Graph Transformation (ICGT15), LNCS. Springer

A method for framework DPO, in the category of edge-labeled graphs Graph.

Fundamentally different approach: count the number of ways in which a graph can be typed.

Methods can be compared:

- encode a DPO rule as its PBPO⁺ equivalent (possible by subsumption)
- instantiate our method for Graph

More related work to be investigated!

Conclusion

Termination 00000

Termination by Tiling for PBPO⁺: proofs are there, but article in draft phase

Todos:

- relax tiling constraints
- \cdot iron out some details
- \cdot evaluate strength
- compare with related work

Thank you!