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inclusion / exclusion principle
1% abstraction: IE for multisets
2"d abstraction: IE for commutative residual algebras

embedding
1%t embedding: CRAs in CRAs with composition
2" embedding: CRACs in commutative /-groups

conclusions
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Inclusion / exclusion principle for 2 sets (IE;)

JAUB| = |A| + [B| — |ANB|

vvvvvvvvvv
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Inclusion / exclusion principle for 3 sets (IEs)

JAUBUC|=|A|+|B|+|C|—|ANB|—|BNC|—|ANC|+|ANBNC]|

(picture from Wikipedia)

vvvvvvvvvvv
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Inclusion / exclusion principle (IE)

Theorem (Inclusion / exclusion (de Moivre, da Silva, Sylvester G7/18th))

for finite family A, := (A))i¢/ of finite sets

‘UA" B Z@cjg (-1)/ ’ﬂAj‘
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Inclusion / exclusion principle (IE)

Theorem (Inclusion / exclusion (de Moivre, da Silva, Sylvester G7/18th))

for finite family A, := (A))i¢/ of finite sets

’UA" B ng(_l)um ' ’ﬂAj‘
[Example

forl:={1,2,3}, A1 :=={a,b}, A, :={b,c}, and As := {c,a}

{a,b,c}| = 3 = [{a,b}| + [{b,c}| + [{c,a}| — [{b}] — [{c}| — [{a}| + 0]

nnnnnnnnnnn
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UAI| = >y (=1)V"1 - |NA)| by double counting

Standard double counting proof.

JAUB| = |A|+|B|—|ANB| forxec ANB?

vvvvvvvvvvvv
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UAI| = >y (—1)V71 - |NA)| by double counting

Standard double counting proof.

1=2—-1 forxeANB
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UAI| = >y (—1)V71 - |NA)| by double counting

Standard double counting proof.

=
%

|AUBUC| = |A|+|B|+|C|-|[ANB|—-|BNC|—-|[ANC|+]JANBNC| forxe ANBNC?
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UAI| = >y (—1)V71 - |NA)| by double counting

Standard double counting proof.

B
&

1=3-3+1 forxeAnBNC
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UAI| = >y (—1)V71 - |NA)| by double counting

Standard double counting proof.

count for each individual x € (JA; depending on #(x) := |{i | x € Aj}|:

1 =1 if #(x) = 1
1 = 2-1 if #(x) = 2
1 = 3-3+1 if #(x) = 3
1 = 4-6+4-1 if #(x) = 4
1 = ? if #(x) =n
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UAI| = >y (—1)V71 - |NA)| by double counting

Standard double counting proof.

count for each individual x € | JA; depending on #(x) := |[{i | x € A;}|:

1 = 1 if #(x) = 1
1 = 2-1 if 4(x) = 2
1 = 3-3+41 if #(x) = 3
1 — 4-6+4—-1 if #(x) = 4
1 = Elggn(_l)j;l(j?) if #(x) =n
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UAI| = >y (—1)V71 - |NA)| by double counting

Standard double counting proof.

count for each individual x € | JA; depending on #(x) := |[{i | x € A;}|:

1 = 1 if #(x) = 1
1 = 2-1 if #(x) = 2
1 = 3-341 if #(x) = 3
1 — 4-6+4-1 if #(x) = 4
1 = Elggn(_l)j;l(j?) if #(x) =n
by double counting: Zoggn(—l)j(D < (1-1)"= 0 (oritical peak) O

LATH Terese, Nijmegen (Hybrid); 8-6-2022 4



Identities analogous to IE; (for |I| = 2)?

JAUB| = |A|+|B|—|ANB| for finite sets A, B

sssssssss

BATH Terese. Niimegen (Hybrid); 8-6-2022



Identities analogous to IE; (for |I| = 2)?

JAUB| = |A|+|B|—|ANB| for finite sets A, B
max(n,m) = n+m - min(n,m) for natural numbers n,m

where = is monus, also known as cut-off minus; n = m = n — min(n,m)
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Identities analogous to IE; (for |I| = 2)?

JAUB| = |A|+|B|—|ANB| for finite sets A, B
max(n,m) = n+m - min(n,m) for natural numbers n,m
lcm(n,m) = n-m-/gcd(n,m) for positive natural numbers n,m

where -/ is dovision, also known as cut-off division; n -/ m = n/gcd(n, m)
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Identities analogous to IE; (for |I| = 2)?

JAUB| = |A|+|B|—|ANB| for finite sets A, B
max(n,m) = n+m - min(n,m) for natural numbers n,m
lcm(n,m) = n-m-/gcd(n,m) for positive natural numbers n,m
MUN = MWN-—(MNN) for finite multisets M, N
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Identities analogous to IE; (for |I| = 2)?

JAUB| = |A|+|B|—|ANB| for finite sets A, B
max(n,m) = n+m = min(n,m) for natural numbers n,m
lcm(n,m) = n-m-/gcd(n,m) for positive natural numbers n,m
MUN = MWN-—(MNN) for finite multisets M, N
max(x,y) = Xx+y = min(x,y) for nonnegative real numbers x, y
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Identities analogous to IE; (for |I| = 2)?

|A U B|
max(n, m)
lecm(n, m)
MUN
max(X, y)
max(x, y)

Al +[B| — AN B|
n+m = min(n,m)
n-m-/gcd(n,m)
MyN—(MNON)

X +y = min(x,y)
X -y <+ min(x,y)

for finite sets A, B

for natural numbers n,m

for positive natural numbers n,m
for finite multisets M, N

for nonnegative real numbers x,y
for x,y real numbers > 1

where = is truncated division; x <y = x/min(x, y)
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Identities analogous to IE; (for |I| = 2)?

|A U B|
max(n, m)
lcm(n, m)
MUN
max(Xx, y)
max(x,y)

Al + 18| — AN B]
n+m = min(n,m)
n-m-/gcd(n,m)
MyN—(MNON)

X +y = min(x,y)
X -y <+ min(x,y)

for finite sets A, B

for natural numbers n,m

for positive natural numbers n,m
for finite multisets M, N

for nonnegative real numbers x, y
for x,y real numbers > 1

IE principles for all of these?
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Identities analogous to IE; (for |I| = 2)?

|A U B|
max(n, m)
lcm(n, m)
MUN
max(Xx, y)
max(x,y)

Al + 18| — AN B]
n+m = min(n,m)
n-m-/gcd(n,m)
MyN—(MNON)

X +y = min(x,y)
X -y <+ min(x,y)

for finite sets A, B

for natural numbers n,m

for positive natural numbers n,m
for finite multisets M, N

for nonnegative real numbers x, y
for x,y real numbers > 1

IE principles for all of these?

Yes, and more, and even for partial operations
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Identities analogous to IE; (for |I| = 2)?

JAUB| = |A|+|B|—|ANB| for finite sets A, B
max(n,m) = n+m = min(n,m) for natural numbers n,m
lcm(n,m) = n-m-/gcd(n,m) for positive natural numbers n,m
MUN = MWN-—(MNN) for finite multisets M, N
max(x,y) = x+y - min(x,y) for nonnegative real numbers x, y
max(x,y) = x-y-+min(x,y) for x,y real numbers > 1

IE principles for all of these? Yes, and more, and even for partial operations
Prove them uniformly from simple axioms?
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Identities analogous to IE; (for |I| = 2)?

JAUB| = |A|+|B|—|ANB| for finite sets A, B
max(n,m) = n+m = min(n,m) for natural numbers n,m
lcm(n,m) = n-m-/gcd(n,m) for positive natural numbers n,m
MUN = MWN-—(MNN) for finite multisets M, N
max(x,y) = x+y - min(x,y) for nonnegative real numbers x, y
max(x,y) = x-y-+min(x,y) for x,y real numbers > 1

IE principles for all of these? Yes, and more, and even for partial operations
Prove them uniformly from simple axioms? Yes, by abstracting inductive proof
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UAI| = >y (—1)V71 - |NA)| by induction on #sets |l

Step case /U {k} of standard proof by induction.
’UAIU{k}‘
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UAI| = >y (—1)V71 - |NA)| by induction on #sets |l

Step case /U {k} of standard proof by induction.

U] = Ui (Un) o




UAI| = >y (—1)V71 - |NA)| by induction on #sets |l

Step case /U {k} of standard proof by induction.

U] = Ui (Un) o

__undistr/ ’UA" + |Ak| - ‘U,-e/(Ai ﬂAk)‘




UAI| = >y (—1)V71 - |NA)| by induction on #sets |l

Step case /U {k} of standard proof by induction.

’UA/U{k}‘ __IEz,Usemil

__undistrt

_2xIH

Uar| + 14 = | (Uar) na

’UA,‘ +1ad = U, A 40|
(chjgl(_l)w;l ' ‘ﬂAfD 1A -
Z(Z)CJQ (=D ’ﬂjej(Aj mAk)’




UAI| = >y (—1)V71 - |NA)| by induction on #sets |l

Step case /U {k} of standard proof by induction.

Unga| =eseme [Ua]+ 1ad = | (Ua) nag
=vnasrt | Ja|+ 1ad = U, (40 a0

__Nsemi¢,cgroup (Z@ng (_1)U|*1 . ‘mAJD L |AI<| L
Z{k}cjglu{k} (~n/= ‘ﬂAj‘




UAI| = >y (—1)V71 - |NA)| by induction on #sets |l

Step case /U {k} of standard proof by induction.

Uugg| =mseme - Ua| +1ad = |(Ua) nad
et ||+ 1ad = U (a0 A
__Nsemi¢,cgroup (Z@ng (_1)U|*1 . ‘mAJD L |AI<| L
Z{k}cjglu{k} (~n/= ‘ﬂAj‘
= Z@chlU{k} S ’ﬂAj’




15 abstraction: IE for multisets

forl:={1,2,3}, My :=[a,b], My := [b, ], and M3 := [c, a]

[a,b,c] = [a,b] W [b, c] W c,a] — [b] —[c] —[a] & ]]

vvvvvvvvvv
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15 abstraction: IE for multisets

forl:={1,2,3}, M; := [a,b], My := [b, |, and M3 := [c, a]

[a,b,c] = [a,b] W [b, c] W c,a] — [b] —[c] —[a] & ]]

Idea: multiplicities built in so no need for taking cardinalities by | |

U/ﬂ — multiset union U (maximum) / intersection N (minimum)

Z / — — multiset sum W (addition) / difference — (subtraction)
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15 abstraction: IE for multisets

forl:={1,2,3}, M; := [a,b], My := [b, |, and M3 := [c, a]

[a,b,c] = [a,b] W [b, c] W c,a] — [b] —[c] —[a] & ]]

Idea: multiplicities built in so no need for taking cardinalities by | |

U/ﬂ — multiset union U (maximum) / intersection N (minimum)

Z / — — multiset sum W (addition) / difference — (subtraction)

caveat: multisets not cgroup; multiplicities nonnegative; cf. 1 =4 -6 +4 = 1 ??

nnnnnnnnnnn
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15 abstraction: IE for multisets

forl:={1,2,3}, M; := [a,b], My := [b, |, and M3 := [c, a]

[a,b,c] = [a,b] W [b, c] W c,a] — [b] —[c] —[a] & ]]

Idea: multiplicities built in so no need for taking cardinalities by | |

U/ﬂ — multiset union U (maximum) / intersection N (minimum)

Z / — — multiset sum W (addition) / difference — (subtraction)

rearrange to only need cmonoid; 1 =4 - 6+4 -~ 1lintol=(4+4) - (6 + 1)

BATH Terese, Nijimegen (Hybrid); 8-6-2022 7



15t abstraction: IE for multisets

IE by rearranging odd (positive) and even (negative) summands in IE

‘UA" B ch/g Gl ‘ﬂAf‘
<o (Lo M) = (S Il snee 0
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15t abstraction: IE for multisets

Theorem (IE for finite family of finite multisets / sets)

A= (S ] = (Sl

TR\ UNIVERSITY OF
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15t abstraction: IE for multisets

Theorem (IE for finite family of finite multisets / sets)

A= (S ] = (Sl

for multisets: as before (but without || clutter) by induction on |/| also proving
O D E, again using the algebraic structure laws (only cmonoid; not cgroup)
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15t abstraction: IE for multisets

Theorem (IE for finite family of finite multisets / sets)

A= (S ] = (Sl

for sets: view as multisets, define |M| := ), M(x), use [M Y N| = |[M| + |[N| and O @ E and

A - (e 1)~ (e 8)| - (S ) - (Sl

YT
LATH TeRese, Nijmegen (Hybrid); 8-6-2022 7



2"Y abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra (A;1,/))

a/l=a (1)
ajla=1 (2)
l/la=1 (3)
(a/b)/(c/b) = (a/c)/(b/c) (4)
(a/b)/a=1 (5)
a/(a/b) = b/(b/a) (6)

residuation: read a/b as a after b

rrrrrrrr
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2"9 abstraction: IE for commutative residual algebras

Skolemisation of diamond: V peak a, b.3 valley b’ &’

sssssssss
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2"9 abstraction: IE for commutative residual algebras

Skolemisation of diamond: V peak a, b. valley b/a,a/b

||||||||||
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2"9 abstraction: IE for commutative residual algebras

vvvvvvvvvv
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29 abstraction: IE for commutative residual algebras

A
bjc

(a/b)/(c/b) = (a/c)/(b/c)

-

!

c/b

b

o
-

a/b
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2"9 abstraction: IE for commutative residual algebras

)
> a/b 2 bjc " (a/b)/(c/b) = (a/c)/(bc)
A "1

c/b

a/b

)

1

L a/(a/b) = b/(b/a)
b /;?(b/a) /
b/a a/(a/b)
/ /ZJ /?/b)/a =1
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2"Y abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra (A, 1, /))

a/l=a (1)
(a/b)/(c/b) = (a/c)/(b/c) (4)
(a/b)/a=1 (5)
a/(a/b) = b/(b/a) (6)

Lemma (Some CRA laws)

ala = 1 (a/b)/c = (a/c)/b
l/a = 1 (a/b)/(b/a) = a/b

commutative BCK algebra with relative cancellation (Dvurecenskij & Graziano)

||||||||||
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2"9 abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra (A;1,/))

a/l=a (1)
(a/b)/(c/b) = (a/c)/(b/c) (4)
(a/b)/a=1 (5)
a/(a/b)=b/(b/a) (6)

Example (Some CRAs)

(N,0,=), (Pos,1,+/), (Mst(A),}, =), (R>0,0, =), (R>1,1,+), ..., all mentioned
and more: ({0,1},0,~), (Set(A),(,—), ..., sub-CRAs by downward-closing

5 BATH Terese, Nijmegen (Hybrid); 8-6-2022 8



CRA derived operations

Definition (Derived operations <, /A, -, V for CRA (A, 1,/))

as<b = a/b=1

anb = a/(a/b)

a-b = ¢ ifa/c=1landc/a=>b (partial)
avb = a-(b/a) (partial)

5 LATH TeRese, Nijmegen (Hybrid); 8-6-2022 .



CRA derived operations

CRA| N | Rx>q | Mst(A) | Set(A) | Pos
unit 1 0 0 ] 0 1
residual / = = - - /
natural order | < < < G C |
total order? v v X X X
well-founded? v X |/ (fin) | / (fin) | /
meet A | min | min N N gcd
product . 4= S W U (if |)
join V | max | max U U lcm
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CRA derived operations

Definition (Derived operations <, A, -, V for CRA (A, 1,/))

as<b = a/b=1

anb = a/(a/b)

a-b = ¢ ifa/c=1landc/a=>b
avb = a-(b/a)

Lemma (Satisfaction of algebraic IE laws for CRASs)

* (A, <) is a partial order; enables proving a = b by inclusionsa < band b < a

vvvvvvvvvvvv
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CRA derived operations

Definition (Derived operations <, A, -, V for CRA (A, 1,/))

as<b = a/b=1

anb = a/(a/b)

a-b = ¢ ifa/c=1landc/a=>b
avb = a-(b/a)

Lemma (Satisfaction of algebraic IE laws for CRASs)

® (A, <) is a partial order; enables proving a = b by inclusions a < b and b <
® (A, N) is a meet-semilattice; a < biffanb=a;1Na=1

yyyyyyyyyyyy

BATH TeReSe, Nijmegen (Hybrid); 8-6-2022 9



CRA derived operations

Definition (Derived operations <, A, -, V for CRA (A, 1,/))

as<b = a/b=1

anb = a/(a/b)

a-b = ¢ ifa/c=1landc/a=>b
avb = a-(b/a)

Lemma (Satisfaction of algebraic IE laws for CRASs)

® (A, <) is a partial order; enables proving a = b by inclusions a < b and b <
® (A, N) is a meet-semilattice; a < biffanb=a;1Na=1
* (A 1,) is a partial commutative monoid; a < b iffa-c = b for some c;

yyyyyyyyyyyy
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CRA derived operations

Definition (Derived operations <, /A, -, V for CRA (A, 1,/))

as<b = a/b=1

anb = a/(a/b)

a-b = ¢ ifa/c=1landc/a=>b
avb = a-(b/a)

Lemma (Satisfaction of algebraic IE laws for CRAS)

® (A, <) is a partial order; enables proving a = b by inclusions a < b and b <

® (A, N) is a meet-semilattice; a < biffanb=a;1Na=1

® (A 1,) is a partial commutative monoid; a < b iffa - ¢ = b for some c;
{

® (A, V) is a partial join-semilattice; a < biffavb=b;1Va=a

1111111111111
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CRA derived operations

Definition (Derived operations <, /A, -, V for CRA (A, 1,/))

as<b = a/b=1

anb = a/(a/b)

a-b = ¢ ifa/c=1landc/a=>b
avb = a-(b/a)

Lemma (Satisfaction of algebraic IE laws for CRAS)

* (A, <) is a partial lattice;aV (aAb)~aandaA(aVb)~aif(aVvb)l

® (A, N) is a meet-semilattice; a < biffanb=a;1Na=1

® (A 1,.) is a partial commutative monoid; a < b iffa-c = b for some c;
{

® (A, V) is a partial join-semilattice; a < biffavb=b;1Va=a

1111111111111
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CRA derived operations

Definition (Derived operations <, A, -, V for CRA (A, 1,/))

as<b = a/b=1

anb = a/(a/b)

a-b = ¢ ifa/c=1landc/a=>b
avb = a-(b/a)

Lemma (Satisfaction of algebraic IE laws for CRASs)

* (A, <) is a partial lattice; aVv (aAb)~aandaA(aVb)~aif(aVb)l
® (A, A\, V) is a partial distributive lattice; (aVb)Ac ~ (aAc)V(bAc)if(aVb)l
* (A 1,) is a partial commutative monoid; a < b iffa-c = b for some c;

yyyyyyyyyyyy
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IE for CRASs

Theorem (Inclusion / exclusion for finite family a))

o=|J] Na |l and E=| J] Na |l = Va~0/E and E<O

Dcyci HcJCl
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IE for CRASs

Theorem (Inclusion / exclusion for finite family a))

0= H /\aj | and E:= H /\aj ¢:>\/a,:O/E and E<O

DcyCi Dcyci

algebraic version of proof by induction on |/| using IE laws for CRAs and

(b/a) A (c/a) = (c/a)/(c/b) = (bAc)/(anc)
(a-b)/(c-d) = (a/c)/(d/b) ifc<a b<dand(a-b)l, (c-d){
(a-b)Ac ~ (anc)-(bA(c/a)) if (a-b)l O

BATH Terese, Nijmegen (Hybrid); 8-6-2022 10



IE for CRASs

Theorem (Inclusion / exclusion for finite family a))

o=|J] Na |l and E=| J] Na |l = Va~0/E and E<O

Dcyci HcJCl

How general is this?

Versions of IE we know of are instances, e.g. probabilities.
Novel (?) instance, measurable multisets, next up.

10



279 abstraction: IE for measurable multisets

A algebra if A C p(A) with A € A and closed under union and complement

UNIVERSITY OF
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279 abstraction: IE for measurable multisets

A algebra if A C p(A) with A € A and closed under union and complement

formally, A sub-algebra of the Boolean algebra p(A)
simple case of algebra in measure theory where closed under countable union

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 11



279 abstraction: IE for measurable multisets

A algebra if A C p(A) with A € A and closed under union and complement

Definition (multiset M being A-measurable)

* M' € Aforeach i, with M’ := {a | M(a) = i} (set at height i of M)
o M>' = { for some i, with M>" := | J,_,;M = {a | M(a) > i} (least i is height of M)

) LATH TeRese, Nijmegen (Hybrid); 8-6-2022 1



279 abstraction: IE for measurable multisets

A algebra if A C p(A) with A € A and closed under union and complement

Definition (multiset M being A-measurable)

* M' € Aforeach i, with M’ := {a | M(a) = i} (set at height i of M)
o M>' = { for some i, with M>" := | J,_,;M = {a | M(a) > i} (least i is height of M)

set measurable iff it is so viewed as multiset
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279 abstraction: IE for measurable multisets

A algebra if A C p(A) with A € A and closed under union and complement

Definition (multiset M being A-measurable)

* M' € Aforeach i, with M’ := {a | M(a) = i} (set at height i of M)
o M>' = { for some i, with M>" := | J,_,;M = {a | M(a) > i} (least i is height of M)

Lemma (CRA)

e sets M' at height i partition A

vvvvvvvvvvvv
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279 abstraction: IE for measurable multisets

A algebra if A C p(A) with A € A and closed under union and complement

Definition (multiset M being A-measurable)

* M' € Aforeach i, with M’ := {a | M(a) = i} (set at height i of M)
o M>' = { for some i, with M>" := | J,_,;M = {a | M(a) > i} (least i is height of M)

Lemma (CRA)

e sets M' at height i partition A
e M>% js support of M (need not be finite!); M empty iff height 0

vvvvvvvvvvvv
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279 abstraction: IE for measurable multisets

A algebra if A C p(A) with A € A and closed under union and complement

Definition (multiset M being A-measurable)

* M' € Aforeach i, with M’ := {a | M(a) = i} (set at height i of M)
o M>' = { for some i, with M>" := | J,_,;M = {a | M(a) > i} (least i is height of M)

Lemma (CRA)

e sets M' at height i partition A
e M>% js support of M ; M empty iff height O
e (Mst(.A), I, —) of A-measurable multisets is CRA (closed under —)

vvvvvvvvvvvv

BATH Terese, Nijmegen (Hybrid); 8-6-2022 11




279 abstraction: IE for measurable multisets

function p from algebra A to non-negative reals is measure if
° u(@) =0
* u(AUB) = u(A) + u(B) for A,B € A and disjoint
extended to measurable multisets by p(M) := > u(M>")

5 LATH Terese, Nijmegen (Hybrid); 8-6-2022 R



279 abstraction: IE for measurable multisets

function p from algebra A to non-negative reals is measure if
° u(@) =0
* u(AUB) = u(A) + u(B) for A,B € A and disjoint
extended to measurable multisets by p(M) := > u(M>")

— N W R L O

0 a b ¢ d e f
[a,a,b,b,b,b,c.e.e.e.e.e.ff]
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279 abstraction: IE for measurable multisets
Definition |

function p from algebra A to non-negative reals is measure if
° u(@) =0
* u(AUB) = u(A) + u(B) for A,B € A and disjoint
extended to measurable multisets by p(M) := > u(M>")

I G+ B —

0 a b ¢ d e f
[a,a,b,b,b,b,c.e.e.e.e.e.ff]

=
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279 abstraction: IE for measurable multisets

function p from algebra A to non-negative reals is measure if
° u(@) =0
* u(AUB) = u(A) + u(B) for A,B € A and disjoint
extended to measurable multisets by p(M) := > ,u(M>") = K ()

6
5
1.5
4 +
14
3 +
0e3
2 +
22
1 +
1ol
0a b ¢ d e f =
[a,a,b,b,b,b,c.e.e.e.e.e.ff] 14
NIVERSITY OF
BATH Terese, Nijimegen (Hybrid); 8-6-2022 11




279 abstraction: IE for measurable multisets

Theorem (IE for finite family of measurable multisets / sets)

wlJa) = (nglu(ﬂAj)> = (Z@qg,”(ﬂ“ﬂ>

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 11



2" abstraction: IE for measurable multisets

Theorem (IE for finite family of measurable multisets / sets)

u(Ja) = (zmg,mm)) . (zmg, mA,))

for measurable multisets: instance of IE for CRAs

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 11



2" abstraction: IE for measurable multisets

Theorem (IE for finite family of measurable multisets / sets)

u(Ja) = (zmg,mm)) . (zmg, mA,))

for sets: view as multisets, use (M W N) = u(M) + p(N) and O 2 E and

U= (B0 1) = (B W ) = (S ) = (S ) =

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 11



the IE?

| like neither the partial - nor the binary / because they are so ugly !

12



the IE?

| want my beautiful total composition / product and unary inverse !!

UNIVERSITY OF

BATH Terese, Nijmegen (Hybrid); 8-6-2022 12




the IE!

| want my beautiful total composition / product and unary inverse !!

bits : natural numbers integers
(B,0,~) (N, 0, =, +) : (2,0,(-), +, min, max)

CRA : CRAC . commutative lattice-ordered group
(A1,/) (A 1,/,°) : (A, 1,71 A V)

where B := {0,1} and a CRAC is a CRA with composition -

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 12



From CRAs to CRACs

Definition (CRA with composition (A, 1,/, "))

a/l=a
(a/b)/(c/b) = (a/c)/(b/c)
(a/b)/a=1

a/(a/b) = b/(b/a)

c/(a-b) =(c/a)/b

(a-b)/c=(a/c)-(b/(c/a))
1-1=1

(1)
(4)
(5)
(6)
(7)
(8)
(9)

UNIVERSITY OF
LATH TeRese, Nijmegen (Hybrid); 8-6-2022



From CRAs to CRACs

b/a

a/b b/c (a/b)/(c/b) = (a/c)/(b/c)

c/b

a/b

\

1 1

b /7(!7/&0
7 a/(a/b)

a/(a/b) = b/(b/a)

BATH Terese, Nijmegen (Hybrid); 8-6-2022 13



From CRAs to CRACs

)
o bjc " (a/b)/(c/b) = (a/c)/(b/c)
c/(a-b) A "1
P _ b
’ ‘i" c (a/c)-(/c/a) €|
S a/b
c b >

1 1

b /7(!7/&0
7 a/(a/b)

a/(a/b) = b/(b/a)

BATH Terese, Nijmegen (Hybrid); 8-6-2022 13



From CRAs to CRACs

Definition (CRA with composition (A1, /,-))

a/l=a (1)
(a/b)/(c/b) =(a/c)/(b/c) (4)
(a/b)/a=1 (5)
a/(a/b) =b/(b/a) (6)
c/(a-b) =(c/a)/b (7)
(a-b)/c=(a/c)-(b/(c/a)) (8)
1.1=1 (9)

Composition in CRA vs. CRAC

in CRAs with derived composition - partial versions of (7)-(8) hold:
c/(a-b)=(c/a)/band (a-b)/c~(a/c)-(b/(c/a))if(a-b)l,and1l-1=1

|||||||||||||
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From CRAs to CRACs

Definition (CRA with composition (A1, /,-))

a/l=a (1)
(a/b)/(c/b) =(a/c)/(b/c) (4)
(a/b)/a=1 (5)
a/(a/b) =b/(b/a) (6)
c/(a-b)=(c/a)/b (7)
(a-b)/c=(a/c)-(b/(c/a)) (8)
1-1=1 (9)

Composition in CRAC vs. CRA

composition - in CRACs satisfies the laws of derived composition in CRAs:
a/(a-b)=(a/a)/b=1and(a-b)/a=1-b=(1-b)/((1-b)/b)=b.

|||||||||||||

58 BATH . Terese, Niimegen (Hybrid); 8-6-2022 13



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

Idea (commutative case of residual system construction)

adjoin compositions of objects freely, modulo AC, respecting residuation

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

Idea (commutative case of residual system construction)

carrier of CT: multisets of objects modulo projection equivalence

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

Residuation in C™ by tiling with diamonds of C (Lévy, Stark, Terese)
abbreviate [a)] to [a; | i€ []. let/:={0,...,n=1}and/:={0,...,m = 1}.
e residual [a/] //[b)] of [a] (left) after [a/] (bottom) is [a]] (right) by tiling

ajj11 = ajj/bj

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

Residuation in C* by tiling with diamonds of C
abbreviate [a)] to [a; | i€ []. let/:={0,...,n=1}and/:={0,...,m = 1}.
e residual [a/] /[b)] of [a/] after [a/] is [a]] by tiling
* projection equivalence [a)] = [bj] if [a]] = I = [b]] ([a/] C [b)] and [by] C [a])

i

ajj11 = ajj/bj

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Definition (of components of C")

e carrier: finite multisets over A modulo projection equivalence =
(projection may be computed by rules (7)-(8) eliding units 1 of C)

L ATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Definition (of components of C")

e carrier: finite multisets over A modulo projection equivalence =
® unit: empty multiset ]

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Definition (of components of C")

e carrier: finite multisets over A modulo projection equivalence =
® unit: empty multiset ]
¢ residuation //: by tiling with diamonds of C
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C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

e carrier: finite multisets over A modulo projection equivalence =
® unit: empty multiset ]

* residuation //: by tiling with diamonds of C

® composition: multiset sum &

LATH Terese, Nijmegen (Hybrid); 8-6-2022 14




C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

Definition (of components of C")

e carrier: finite multisets over A modulo projection equivalence =
® unit: empty multiset ]

* residuation //: by tiling with diamonds of C

® composition: multiset sum &

® embedding of C into C*: a — [a]

LATH Terese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

CRAC := ({0,...,9},0,—) of digits;
® has some compositions, e.g. 7 =3+ 4 (since 3 -7 =0and 7 - 3 = 4) but
most not, e.g. each of 7+ 6,9+ 4, 4+ 4 4+ 4 not defined in C

BATH TeReSe, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

CRAC := ({0,...,9},0,—) of digits;
® has some compositions, e.g. 7 =3+ 4 (since 3 -7 =0and 7 - 3 = 4) but
most not, e.g. each of 7+ 6, 9+ 4,4 + 4 4+ 4 not defined in C

® [7,6] and [9, 4] represent first two in C"; should be projection equivalent . ..

BATH TeReSe, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

CRAC := ({0,...,9},0,—) of digits;
® has some compositions, e.g. 7 =3+ 4 (since 3 -7 =0and 7 - 3 = 4) but
most not, e.g. each of 7+ 6, 9+ 4,4 + 4 4+ 4 not defined in C

® [7,6] and [9, 4] represent first two in C"; should be projection equivalent . ..
* [7,6]/19,4] %) (17,6]/19]) /14] %) [7-9,6=(9=7)]/[4]=[0,4]/[4] =1
[9.41717,6] 2 (19,41 717)) /6] 2 [0 = 7.4 = (7 = 9)| /ll6] = [2,4] /6] =

vvvvvvvvvv

ATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

CRAC := ({0,...,9},0,—) of digits;
® has some compositions, e.g. 7 =3+ 4 (since 3 -7 =0and 7 - 3 = 4) but
most not, e.g. each of 7+ 6, 9+ 4,4 + 4 4+ 4 not defined in C

® [7,6] and [9, 4] represent first two in C"; should be projection equivalent . ..
* [7.6]/19.4]1 2 ([7.6] /19]) /141 € [7 = 9,6 = (9 = 7)] /[4] = [0,4] /[4] = ]

[9,4] 717,61 2 (19,41 717)) J16] & [9 = 7,4 = (7 = 9)] J[6] = [2,4] //[6] = I
e C* isomorphic to (N, 0, -, +)

vvvvvvvvvv

ATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRAC C*=(Mst(A)/=,[|,/, V)

Theorem (Dvurecenskij)

C embeds ([a] = [p] = a = b, [1] =]]. [a] /[b] = [a/b]) downward-closedly (dc)
MJbl=] = JaM=][a))inC*

AT UNIVERSITY OF
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C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Theorem (Dvurecenskij)

‘
"
"

C embeds downward-closedly inC™

foralla,b, b= (aAb)-(b/a)

o
e~

by := by

»— > >
%{bu/ar

— /.
adjjt1 = ai]‘/bij a; '= aim

nnnnnnnnnnn
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C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

in particular, b,‘j = (a,-j VAN b,j) : bH—lj

aj = dajo ajj
L4
j j bii
b]’ = boj

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

hence b; = (] ¢;) - bj for column j

/o X
/7 -
/ bis1j == by/aj
J Ui
-
a; ‘= aj ajj — 3. /b:
! 0 Cjj 1= aj A b,’j djj+1 = all/bll

LATH Terese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRACC"=(Mst(A)/=,{,/. W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

® embedding being trivial (a = b iffa/b =1 and b/a = 1), to show
downward-closedness assume M //[b] = || for M = [a/]

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1, /) embeds in CRACC"=(Mst(A)/=,{,/. W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

® embedding being trivial (a = b iffa/b =1 and b/a = 1), to show
downward-closedness assume M //[b] = || for M = [a/]

e setting b = by the before gives by = (][] cio) - by and a; = cjo for eachj €/
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C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

® embedding being trivial (a = b iffa/b =1 and b/a = 1), to show
downward-closedness assume M //[b] = || for M = [a/]

e setting b = by the before gives by = (][] cio) - by and a; = cjo for eachj €/
e hence by = ([ a/) - by, showing that ([] a,)] from which M = [[] a/]
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C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

® embedding being trivial (a = b iffa/b =1 and b/a = 1), to show
downward-closedness assume M //[b] = || for M = [a/]

* setting b = by the before gives bg = ([] cio) - by and a; = cjo for each i €/
e hence by = ([ a/) - by, showing that ([] a,)] from which M = [[] a/]
that = is a congruence follows by cubing with (4). O

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

Corollary

for CRA-expressions t, s, universal statement Va.t = s valid in CRAs iff in CRACs

by downward-closedness also bounded Js could be allowed

LATH TeRese, Nijmegen (Hybrid); 8-6-2022
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C=(A,1,/) embeds in CRAC CT=(Mst(A)/=,I,/, W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

Corollary

any partial monoid homomorphism f from C into a monoid M := (
via embedding and a unique monoid homomorpism h from C* to M

B, 1,0) factors

LATH TeRese, Nijmegen (Hybrid); 8-6-2022
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C=(A,1, /) embeds in CRACC"=(Mst(A)/=,{,/. W)

Theorem (Dvurecenskij)

C embeds downward-closedly inC™

Corollary

any partial monoid homomorphism f from C into a monoid M := (B, 1, o) factors
via embedding and a unique monoid homomorpism h from C* to M

let f be such that if c = a - b then f(c) = a o b. by monoid homomorphism only
choice h : [ag,...,an-1] — f(ag) o...of(ap). that h is a function independent of
representative, follows from that if [a)] = [b]. then [a/] = [cy] = [b)] for some
matrix ¢, (above Riesz decomposition). conclude by rearranging and assumption
from f(ag) o...of(an-1) = f(coo) © - .. o f(C(n=1)(m=1)) = f(bo) 0... 0 f(bm-1). O

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 14



From CRACs to commutative /-groups

Definition (Commutative (abelian) lattice-ordered group)

A commutative ¢-group is structure G := (A, 1,71, - A, V) with (A, A, V) a lattice,
(A, 1,71 .) a commutative group, where - preserves ordera < b = a-c<b-c

15
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From CRACs to commutative /-groups

Definition (Commutative /-group)

A commutative /-group is structure G := (A, 1,71 . A, V) with (A, A, V) a lattice,
(A, 1,71 .) a commutative group, where - preserves ordera<b = a-c<b-c
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From CRACs to commutative /-groups

Definition (Commutative /-group)

A commutative /-group is structure G := (A, 1,71 . A, V) with (A, A, V) a lattice,
(A, 1,71 .) a commutative group, where - preserves ordera<b = a-c<b-c

for any such G, lattice (A, A, V) is distributive

15
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 16



CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

freely compose a, b~! (inverse of b), ¢, a~* (inverse of a)

N AN

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

freely compose a, b=, ¢, a~! (conversion)

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

compose a, b~1, ¢, a~! modulo AC

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

sort into positive-negative (forward-backward) order a, ¢, b~1, a~*

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

a-c.

25+ how to respect cancellation?; reordering of a, a~! needed?

sort into valley

uuuuuuuuuu
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

quotient out = as for fractions: % = % because 6 - 35 =21-10

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

g = g ifa-d-e=c-b-eforsomee — commutative group (Grothendieck)

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

in the present example: & = ¢ becausea-c-b=c-a-b

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

CRACs simpler: have cancellation; cancel a A b from 2 5 SO 5 2 normalises to Z;g

uuuuuuuuuu

TeReSe, Nijmegen (Hybrid); 8-6-2022 16
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Definition (of components of CA)

* carrier: (formal) fractions £ with a,b € A that are normalised: a Ab =1

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 16



CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Definition (of components of CA)

* carrier: (formal) fractions § with a,b € A that are normalised: a Ab = 1

* unit: 1
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Definition (of components of CA)

* carrier: (formal) fractions § with a,b € A that are normalised: a Ab = 1

* unit: 1

* inverse: (2)7 ! :=

(Vi
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Definition (of components of 5)

* carrier: (formal) fractions § with a,b € A that are normalised: a Ab = 1

* unit: 1
1._ b

* inverse: (8)7* =2

* composition: - § = %

) LATH TeRese, Nijmegen (Hybrid); 8-6-2022 16



CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Definition (of components of 5)

* carrier: (formal) fractions § with a,b € A that are normalised: a Ab = 1

* unit: 1

* inverse: (2)"1:=2

* composition: £ - § := EZ;Z% 73
L

® meet: g/\ € =

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Definition (of components of 5)

* carrier: (formal) fractions § with a,b € A that are normalised: a Ab = 1

* unit: 1
1._ b

inverse: ()% := 2

* composition: & - § := %

® meet: 2 A= £5S
inin: 4 c .__ avc
® join: § Vg = prg
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

Definition (of components of CA)

* carrier: (formal) fractions § with a,b € A that are normalised: a Ab = 1

* unit: 1
1._ b

* inverse: (8)7* =2

* composition: & - § := %

® meet: 2 A= £5S
inin: 4 c .__ avc
® join: § Vg = prg

* embedding " of Cin C: a — 2
a/b s (a-(b)~1) V1, other operations to ‘themselves’
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC
_

— d b
=({3lanb=1}1,(9)7" =58 &= (a5 N 6= a5V

nnnnnnnnnnnn
A
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC
_

=({glanb=1}1,() =53 5= G a0 g

Qln
[y
<
Q
oo
<
Qln
Il
>
Q
~

A - i n.6 _ 3 6 5 __ 1 6 5 _ 30
(N, 1,-/,-) gives (normalised) fractions ;2 -3 =3, s A5 = g5, and 2 V3 = .

vvvvvvvvvvv

ATH TeReSe, Nijmegen (Hybrid); 8-6-2022 16



CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC
Definition

~ = d b
Ci=({3lanb=1L1.6) =35 &= et 5/ 6= 55V &= )

Theorem (Dvurecenskij)

<
)
‘

C embeds in positive cone C>1 (elements > unit) of commutative (-group C

Easy using ATP e.g. Prover9

nnnnnnnnnnn
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CRAC C=(A, 1, /,-) embeds in commutative ¢-groupC

(a/d)-(c/b) a  c ._ anc

2R _ -1._b —
C=({§lanb=1}1,(5)" =35 6:= @05/ 6= tvar 5V @

. av
= Bnd)

Theorem (Dvurecenskij)

C embeds in positive cone (?21 of commutative ¢-group C

Corollary

for CRA-expressions t, s, universal statement Va.t = s is valid in CRACs iff
V& € G>1.t =S is in commutative (-groups G, for " such that r/u := (r- (u)~') v 1

latter decidable (co-NP; Khisamiev, Weispfenning), so former decidable for CRAs

LATH TeRese, Nijmegen (Hybrid); 8-6-2022
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IE for commutative (-groups G := (A, 1,1, - A, V)

® max(6,15,10) = min (6,15,10)+6+15+10-min (6,15) = min (15,10) = min (10, 6)

sssssssssss
ATH Terese, Nijmegen (Hybrid); 8-6-2022 17



IE for commutative (-groups G := (A, 1,1, - A, V)

® max(6,15,10) = min (6,15,10)+6+15+10-min (6,15) = min (15,10) = min (10, 6)
® max(—3,6,1) =min(-3,6,1) + -3+ 6+ 1 —min(—3,6) — min (6,1) — min (1,—3)

sssssssss
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IE for commutative (-groups G := (A, 1,1, - A, V)

® max (6,15,10) = min (6,15,10)+6+15+ 10—~ min (6,15)=min (15,10) = min (10, 6)
® max(—3,6,1) =min(—3,6,1) + —3+6+ 1 — min (—3,6) — min (6,1) — min (1, —3)

Theorem (IE for commutative /-ordered groups)
1)1
\/a, = H (/\aj)( 2

Py
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IE for commutative (-groups G := (A, 1,1, - A, V)

® max (6,15,10) = min (6,15,10)+6+15+10-min (6,15) = min (15,10) = min (10, 6)
® max(—3,6,1) =min(—3,6,1) + —3+6+ 1 — min (—3,6) — min (6,1) — min (1, —3)

Theorem (IE for commutative /-ordered groups)
1)Ut
Va= 1] (Aa)*

Py

as before by induction on |/| now using commutative ¢-group laws ]

nnnnnnnnnnnn

BATH TeReSe, Nijmegen (Hybrid); 8-6-2022 17



IE for commutative (-groups G := (A, 1,1, - A, V)

® max (6,15,10) = min (6,15,10)+6+15+ 10—~ min (6,15)=min (15,10) = min (10, 6)
® max(—3,6,1) =min(—3,6,1) + —3+6+ 1 — min (—3,6) — min (6,1) — min (1, —3)

alternatively in case all elements in a; are in positive cone G>1:
rearrange rhs using - associ/commutative, ~! anti-automorphic as:

II Aa|/| 1T Aa

0yl 0cyCi

o

and conclude by assumption from IE for CRAs (then also gives O > E)

uuuuuuuuuu

BATH TeReSe, Nijmegen (Hybrid); 8-6-2022 17



Conclusions and questions / projects

commutative case

bits : natural numbers : integers
(B,0, =) (N, 0, =, +) . (Z,0,(-),+, min, max)

CRA : CRAC :  commutative ¢-group
(A 1,/)) (A1, /,) : (A, 1,71 A V)

5 LATH TeRese, Nijmegen (Hybrid); 8-6-2022 B



Conclusions and questions / projects

non-commutative case?

rewrite system (Newman) : category : groupoid
multistep / development : rewrite sequence : valley (Church & Rosser)
simple braids . positive braids braids
? : ? : Garside theory (Dehornoy)
residual system : RS with composition : ? (see appendix)
parallel : sequential : invert

residual system / residual system with composition £
concurrent transition / computation system (Stark)

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 18



Further questions / projects

¢ decide equational theory of CRAs / CRACs / commutative ¢-groups by TRS?

sssssssss

BATH TeReSe, Nijmegen (Hybrid); 8-6-2022
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Further questions / projects

¢ decide equational theory of CRAs / CRACs / commutative ¢-groups by TRS?
® CRAs complete for universal statements (in signature) on N?
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Further questions / projects

¢ decide equational theory of CRAs / CRACs / commutative ¢-groups by TRS?
® CRAs complete for universal statements (in signature) on N?

® integrate CRA / CRAC / commutative /-group ATP in proof assistants
Isabelle / Coq theories of multisets distinct (finite / infinite support; CRAs!)
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Further questions / projects

¢ decide equational theory of CRAs / CRACs / commutative ¢-groups by TRS?
® CRAs complete for universal statements (in signature) on N?

® integrate CRA / CRAC / commutative /-group ATP in proof assistants
Isabelle / Coq theories of multisets distinct (finite / infinite support; CRAs!)

® conversions are obtained by closing symmetrically then transitively

~

the same for CRA C: first C (not a partial group; what?) then (C)*?

BATH TeReSe, Nijmegen (Hybrid); 8-6-2022 19



Some opinions

@ multisets (AC) precede sets (ACI)
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Some opinions

@ multisets (AC) precede sets (ACI)
@ signed and / or measurable multisets interesting (see appendix)
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Some opinions

@ multisets (AC) precede sets (ACI)
@ signed and / or measurable multisets interesting (see appendix)
© parallel analysis (residuation) precedes sequential analysis (composition)
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Some opinions

@ multisets (AC) precede sets (ACI)

@ signed and / or measurable multisets interesting (see appendix)

© parallel analysis (residuation) precedes sequential analysis (composition)
O rewrite systems precede categories (quivers, pre-categories ahistorical)

UNIVERSITY OF
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Some opinions

@ multisets (AC) precede sets (ACI)

@ signed and / or measurable multisets interesting (see appendix)

© parallel analysis (residuation) precedes sequential analysis (composition)
O rewrite systems precede categories

©® commutative ¢-groups are subdirect products of linear groups
are multisets (with Visser); use as Leitmotiv for multiset results
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Some opinions

@ multisets (AC) precede sets (ACI)

@ signed and / or measurable multisets interesting (see appendix)

© parallel analysis (residuation) precedes sequential analysis (composition)
@ rewrite systems precede categories

©® commutative ¢-groups are subdirect products of linear groups
are multisets (with Visser); use as Leitmotiv for multiset results

@® not just (co-)categories / groupoids, but rewrite systems (sub-equational)
e.g., termination no reflexivity, conversion no cancellation (dagger)
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Some opinions

@ multisets (AC) precede sets (ACI)

@ signed and / or measurable multisets interesting (see appendix)

© parallel analysis (residuation) precedes sequential analysis (composition)
@ rewrite systems precede categories

©® commutative ¢-groups are subdirect products of linear groups
are multisets (with Visser); use as Leitmotiv for multiset results

@® not just (co-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)

@ CRAs give partial commutative monoids, but allow equational reasoning
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Some opinions

@ multisets (AC) precede sets (ACI)
@ signed and / or measurable multisets interesting (see appendix)
© parallel analysis (residuation) precedes sequential analysis (composition)
O rewrite systems precede categories
©® commutative ¢-groups are subdirect products of linear groups
are multisets (with Visser); use as Leitmotiv for multiset results
O not just (co-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)
@ CRAs give partial commutative monoids, but allow equational reasoning
@ diagrams as formal pictures; diagram = cyclic conversion
a-b-a-!.b~! commutator measures non-commutativity of peak (a, b)
(a/b) - (b/a) measures metric distance of peak (a, b) in CRACs
¢ + 1 —w — x measures balance of peak (¢, x) with valley (¢,w) (Newman)
valley (v/¢, ¢/v) witnesses orthogonality / lub / Icm / pushout of peak (¢, )
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Some opinions

@ multisets (AC) precede sets (ACI)

@ signed and / or measurable multisets interesting (see appendix)

© parallel analysis (residuation) precedes sequential analysis (composition)
@ rewrite systems precede categories

©® commutative ¢-groups are subdirect products of linear groups
are multisets (with Visser); use as Leitmotiv for multiset results

@® not just (co-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)

@ CRAs give partial commutative monoids, but allow equational reasoning
@ diagrams as formal pictures; diagram = cyclic conversion
© Term Rewriting Systems, Terese, CUP 2003, should be made available online
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Some opinions

@ multisets (AC) precede sets (ACI)

@ signed and / or measurable multisets interesting (see appendix)

© parallel analysis (residuation) precedes sequential analysis (composition)
@ rewrite systems precede categories

©® commutative ¢-groups are subdirect products of linear groups
are multisets (with Visser); use as Leitmotiv for multiset results

@® not just (co-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)

@ CRAs give partial commutative monoids, but allow equational reasoning

@ diagrams as formal pictures; diagram = cyclic conversion

© Term Rewriting Systems, Terese, CUP 2003, should be made available online
i the rewriting world will miss the contributions by Hans

EATH TeReSe, Nijmegen (Hybrid); 8-6-2022 N



CRA problems in disguise: EWD 1313

EWD I313}-0

The GCD ond the minimum

T+ all begen with Aaﬁiend who was

e parin
is undergraduate lectures asking me whether ?
had a nice caleulational )’)roo? oF

(o) XLJ =1 = X\L(D.z) = xlz

(Al variables are o{) I Pe natural and {
stonds r Yhe creatss} common divisor.)
T did not hove Rice roof7 (o), so T
started to think abod} i¥, and then the
starked. Hence this lite note.

X *
%

un

Edsger W. Dijkstra Archive, EWD 1313, Austin, 27 November 2001

UNIVERSITY OF

BATH Terese, Nijmegen (Hybrid); 8-6-2022


https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html

Calculational proof of EWD1313 in CRAs

aNb=1= aNnd=aAcifd:=b-cisdefined, ie.d/b=candb/d=1
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Calculational proof of EWD1313 in CRAs
tevwa |

aNb=1= aANd=aAcifd:=b-cisdefined, ie. d/b=candb/d=1

meet

and
(1)
hl?
(é)

hyp

hyp,meet

TR\ UNIVERSITY OF
BATH Terese, Nijmegen (Hybrid); 8-6-2022
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Calculational proof of EWD1313 in CRAs

aNb=1= aNnd=aAcifd:=b-cisdefined, ie.d/b=candb/d=1

Corollary

e for positive numbers, gcd(n,m) =1 = gcd(n,m - k) = ged(n, k)
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Calculational proof of EWD1313 in CRAs

aNb=1= aNnd=aAcifd:=b-cisdefined, ie.d/b=candb/d=1

Corollary

e for positive numbers, gcd(n,m) =1 = gcd(n,m - k) = ged(n, k)
e for natural numbers, min(n,m) = 0 = min(n,m + k) = min(n, k)
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Calculational proof of EWD1313 in CRAs

aNb=1= aNnd=aAcifd:=b-cisdefined, ie.d/b=candb/d=1

Corollary

e for positive numbers, gcd(n,m) =1 = gcd(n,m - k) = ged(n, k)
e for natural numbers, min(n,m) = 0 = min(n,m + k) = min(n, k)
e for multisets, MNN =] = MN(NWL)=MNL
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Calculational proof of EWD1313 in CRAs

aNb=1= aNnd=aAcifd:=b-cisdefined, ie.d/b=candb/d=1

Corollary

e for positive numbers, gcd(n,m) =1 = gcd(n,m - k) = ged(n, k)
e for natural numbers, min(n,m) = 0 = min(n,m + k) = min(n, k)
e for multisets, MNN =] = MN(NWL)=MNL
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Calculational proof of EWD1313 in CRAs

aANb=1= aAd=aAcifd:=b-cisdefined, ie. d/b=candb/d=1

similar example features in Mechanical Mathematicians (Bentkamp &al.)
(ged(n,m) =1and?|n-mandn’ = ged(¢,n)andm’ = ged(¢,m)) =

(n"-m’"|fand?|n"-m’)

nnnnnnnnnnn
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Calculational proof of EWD1313 in CRAs

Lemma
aANb=1= aAd=aAcifd:=b-cisdefined, ie. d/b=candb/d=1

similar example features in Mechanical Mathematicians (Bentkamp &al.)
(ged(n,m) =1and?|n-mandn’ = ged(¢,n)andm’ = ged(¢,m)) =

(n"-m’"|fand?|n"-m’)

is a consequence of a provable CRA statement:

ifanb=1and(a-b)landd<a-b, then(dra) - (dAb)~d

nnnnnnnnnnn
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Residual algebra?

UNIVERSITY OF
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Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition o:

NSNS
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Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition o:

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 23



Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition o:

X/ Y/x
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Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition o:

¢ (x/¥) w- (¥/x)

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 23



Residual systems?

Embedding residual systems with composition in groupoids?

induces groupoid by quotienting out <

NN

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 23



Residual systems?

Embedding residual systems with composition in groupoids?

(¢, ) < ) if some valley makes both peaks (¢, x) and (¢, w) commute:

NSNS

nnnnnnnnnnn

BATH TeReSe, Nijmegen (Hybrid); 8-6-2022 23



Residual systems?

Embedding residual systems with composition in groupoids?

(¢,7) > (x,w) if some valley makes both peaks (¢, x) and (1, w) commute:
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Residual systems?

Embedding residual systems with composition in groupoids?

LATH TeRese, Nijmegen (Hybrid); 8-6-2022 23



Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:
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Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:

(Vo)
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Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:
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