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inclusion / exclusion principle
1st abstraction: IE for multisets
2nd abstraction: IE for commutative residual algebras

embedding
1st embedding: CRAs in CRAs with composition
2nd embedding: CRACs in commutative ℓ-groups

conclusions
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Inclusion / exclusion principle for 2 sets (IE2)

|A ∪ B| = |A|+ |B| − |A ∩ B|
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Inclusion / exclusion principle for 3 sets (IE3)

|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |B ∩ C| − |A ∩ C|+ |A ∩ B ∩ C|
(picture from Wikipedia)
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Inclusion / exclusion principle (IE)

Theorem (Inclusion / exclusion (de Moivre, da Silva, Sylvester C17/18th))

for finite family AI := (Ai)i∈I of finite sets∣∣∣⋃AI

∣∣∣ =∑
∅⊂J⊆I

(−1)|J|−̇1 ·
∣∣∣⋂AJ

∣∣∣

Example

for I := {1,2,3}, A1 := {a,b}, A2 := {b, c}, and A3 := {c, a}

|{a,b, c}| = 3 = |{a,b}|+ |{b, c}|+ |{c, a}| − |{b}| − |{c}| − |{a}|+ |∅|
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|
⋃

AI| =
∑

∅⊂J⊆I (−1)|J|−̇1 · |
⋂

AJ| by double counting

Standard double counting proof.

|A ∪ B| = |A|+ |B| − |A ∩ B| for x ∈ A ∩ B?

by double counting:
∑

0≤j≤n(−1)j(n
j

)
⇐ (1 − 1)n ⇒ 0 (‘critical peak’)
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⋃
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∑

∅⊂J⊆I (−1)|J|−̇1 · |
⋂

AJ| by double counting

Standard double counting proof.

|A ∪ B ∪ C| = |A|+|B|+|C|−|A ∩ B|−|B ∩ C|−|A ∩ C|+|A ∩ B ∩ C| for x ∈ A ∩ B ∩ C?
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|
⋃

AI| =
∑

∅⊂J⊆I (−1)|J|−̇1 · |
⋂

AJ| by double counting

Standard double counting proof.

1 = 3 − 3 + 1 for x ∈ A ∩ B ∩ C

by double counting:
∑

0≤j≤n(−1)j(n
j

)
⇐ (1 − 1)n ⇒ 0 (‘critical peak’)
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|
⋃

AI| =
∑

∅⊂J⊆I (−1)|J|−̇1 · |
⋂

AJ| by double counting

Standard double counting proof.

count for each individual x ∈
⋃

AI depending on #(x) := |{i | x ∈ Ai}|:

1 = 1 if #(x) = 1

1 = 2 − 1 if #(x) = 2

1 = 3 − 3 + 1 if #(x) = 3

1 = 4 − 6 + 4 − 1 if #(x) = 4

1 = . . . ? . . . if #(x) = n

by double counting:
∑

0≤j≤n(−1)j(n
j

)
⇐ (1 − 1)n ⇒ 0 (‘critical peak’)
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Identities analogous to IE2 (for |I| = 2)?

|A ∪ B| = |A|+ |B| − |A ∩ B| for finite sets A,B

Questions

IE principles for all of these?
Prove them uniformly from simple axioms?
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Identities analogous to IE2 (for |I| = 2)?

|A ∪ B| = |A|+ |B| − |A ∩ B| for finite sets A,B

max(n,m) = n + m −̇min(n,m) for natural numbers n,m

where −̇ is monus, also known as cut-off minus; n −̇ m = n −min(n,m)

Questions

IE principles for all of these?
Prove them uniformly from simple axioms?
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Identities analogous to IE2 (for |I| = 2)?

|A ∪ B| = |A|+ |B| − |A ∩ B| for finite sets A,B

max(n,m) = n + m −̇min(n,m) for natural numbers n,m

lcm(n,m) = n · m /· gcd(n,m) for positive natural numbers n,m

where /· is dovision, also known as cut-off division; n /· m = n/gcd(n,m)

Questions

IE principles for all of these?
Prove them uniformly from simple axioms?

TeReSe, Nijmegen (Hybrid); 8–6–2022 5



Identities analogous to IE2 (for |I| = 2)?

|A ∪ B| = |A|+ |B| − |A ∩ B| for finite sets A,B

max(n,m) = n + m −̇min(n,m) for natural numbers n,m

lcm(n,m) = n · m /· gcd(n,m) for positive natural numbers n,m

M ∪ N = M ⊎ N − (M ∩ N) for finite multisets M,N

Questions

IE principles for all of these?
Prove them uniformly from simple axioms?

TeReSe, Nijmegen (Hybrid); 8–6–2022 5



Identities analogous to IE2 (for |I| = 2)?

|A ∪ B| = |A|+ |B| − |A ∩ B| for finite sets A,B

max(n,m) = n + m −̇min(n,m) for natural numbers n,m

lcm(n,m) = n · m /· gcd(n,m) for positive natural numbers n,m

M ∪ N = M ⊎ N − (M ∩ N) for finite multisets M,N

max(x, y) = x + y −̇min(x, y) for nonnegative real numbers x, y

Questions

IE principles for all of these?
Prove them uniformly from simple axioms?

TeReSe, Nijmegen (Hybrid); 8–6–2022 5



Identities analogous to IE2 (for |I| = 2)?

|A ∪ B| = |A|+ |B| − |A ∩ B| for finite sets A,B

max(n,m) = n + m −̇min(n,m) for natural numbers n,m

lcm(n,m) = n · m /· gcd(n,m) for positive natural numbers n,m

M ∪ N = M ⊎ N − (M ∩ N) for finite multisets M,N

max(x, y) = x + y −̇min(x, y) for nonnegative real numbers x, y

max(x, y) = x · y ÷min(x, y) for x, y real numbers ≥ 1

where ÷ is truncated division; x ÷ y = x/min(x, y)

Questions
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Identities analogous to IE2 (for |I| = 2)?
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Identities analogous to IE2 (for |I| = 2)?
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Identities analogous to IE2 (for |I| = 2)?

|A ∪ B| = |A|+ |B| − |A ∩ B| for finite sets A,B

max(n,m) = n + m −̇min(n,m) for natural numbers n,m

lcm(n,m) = n · m /· gcd(n,m) for positive natural numbers n,m

M ∪ N = M ⊎ N − (M ∩ N) for finite multisets M,N

max(x, y) = x + y −̇min(x, y) for nonnegative real numbers x, y

max(x, y) = x · y ÷min(x, y) for x, y real numbers ≥ 1

Questions

IE principles for all of these? Yes, and more, and even for partial operations
Prove them uniformly from simple axioms? Yes, by abstracting inductive proof
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|
⋃

AI| =
∑

∅⊂J⊆I (−1)|J|−̇1 · |
⋂

AJ| by induction on #sets |I|

Step case I ∪ {k} of standard proof by induction.

∣∣∣⋃AI∪{k}

∣∣∣
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|
⋃
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∑

∅⊂J⊆I (−1)|J|−̇1 · |
⋂
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1st abstraction: IE for multisets

Example

for I := {1,2,3}, M1 := [a,b], M2 := [b, c], and M3 := [c, a]

[a,b, c] = [a,b] ⊎ [b, c] ⊎ [c, a]− [b]− [c]− [a] ⊎ []̸

Idea: multiplicities built in so no need for taking cardinalities by | |

⋃
/
⋂

7→ multiset union ∪ (maximum) / intersection ∩ (minimum)∑
/− 7→ multiset sum ⊎ (addition) / difference − (subtraction)

Theorem (IE for finite family of finite multisets / sets)

⋃
MI =

(⊎
∅⊂J⊆

o
I

⋂
MJ

)
−

(⊎
∅⊂J⊆

e
I

⋂
MJ

)
∣∣∣⋃AI

∣∣∣ = (∑
∅⊂J⊆

o
I

∣∣∣⋂AJ

∣∣∣) −̇

(∑
∅⊂J⊆

e
I

∣∣∣⋂AJ

∣∣∣)

Proof.
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Example

for I := {1,2,3}, M1 := [a,b], M2 := [b, c], and M3 := [c, a]

[a,b, c] = [a,b] ⊎ [b, c] ⊎ [c, a]− [b]− [c]− [a] ⊎ []̸
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⋃
/
⋂

7→ multiset union ∪ (maximum) / intersection ∩ (minimum)∑
/− 7→ multiset sum ⊎ (addition) / difference − (subtraction)

rearrange to only need cmonoid; 1 = 4 −̇ 6 + 4 −̇ 1 into 1 = (4 + 4) −̇ (6 + 1)
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1st abstraction: IE for multisets

IE by rearranging odd (positive) and even (negative) summands in IE∣∣∣⋃AI

∣∣∣ =∑
∅⊂J⊆I

(−1)|J|−̇1 ·
∣∣∣⋂AJ

∣∣∣
=cgroup

(∑
∅⊂J⊆

o
I

∣∣∣⋂AJ

∣∣∣) −̇

(∑
∅⊂J⊆

e
I

∣∣∣⋂AJ

∣∣∣) since O ≥ E

Theorem (IE for finite family of finite multisets / sets)

⋃
MI =

(⊎
∅⊂J⊆

o
I

⋂
MJ

)
−

(⊎
∅⊂J⊆

e
I

⋂
MJ

)
∣∣∣⋃AI

∣∣∣ = (∑
∅⊂J⊆

o
I
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e
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1st abstraction: IE for multisets

Theorem (IE for finite family of finite multisets / sets)

⋃
MI =

(⊎
∅⊂J⊆

o
I

⋂
MJ

)
−

(⊎
∅⊂J⊆

e
I

⋂
MJ

)
∣∣∣⋃AI

∣∣∣ = (∑
∅⊂J⊆

o
I

∣∣∣⋂AJ

∣∣∣) −̇

(∑
∅⊂J⊆

e
I

∣∣∣⋂AJ

∣∣∣)

Proof.

for multisets: as before (but without | | clutter) by induction on |I| also proving
O +⊇ E, again using the algebraic structure laws (only cmonoid; not cgroup)
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2nd abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra ⟨A,1, /⟩)

a/1 = a (1)

a/a = 1 (2)

1/a = 1 (3)

(a/b)/(c/b) = (a/c)/(b/c) (4)

(a/b)/a = 1 (5)

a/(a/b) = b/(b/a) (6)

residuation: read a/b as a after b
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2nd abstraction: IE for commutative residual algebras

a

a

b

a/b
a

1

a/b

c/b

(a/b)/(c/b) = (a/c)/(b/c)b/c
a/c

c

a

b

Skolemisation of diamond: ∀ peak a,b.∃ valley b′, a′

b

a/1 = a

b

b/a

a

a/b

b/(b/a)
a/(a/b)

(a/b)/a = 1

a/(a/b) = b/(b/a)

11

b/a
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Skolemisation of diamond: ∀ peak a,b. valley b/a, a/b

b
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(a/b)/a = 1
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2nd abstraction: IE for commutative residual algebras

a/1 = a

b/a

b

a/b
a a/c

c

a/b

a

b

b

b/a

a

a/b

b/(b/a)
a/(a/b)

(a/b)/a = 1

a/(a/b) = b/(b/a)

c/b

(a/b)/(c/b) = (a/c)/(b/c)b/c

11

b

a

1/a = 1

1

a
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2nd abstraction: IE for commutative residual algebras

b/a

a/b
a

b/a

a

a/b

b/(b/a)
a/(a/b)

(a/b)/a = 1

a/(a/b) = b/(b/a)

1

b

a

1/a = 1

laws (1)–(4): residual system (Lévy,Stark,Terese)

a

a/b

b

b

c/b

b/c (a/b)/(c/b) = (a/c)/(b/c)
a/c

c

1

a/1 = a
a

b
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2nd abstraction: IE for commutative residual algebras

a

b/a

b

a/b
a

1

a

a/b

b

b/(b/a)
a/(a/b)

(a/b)/a = 1a/b

b/a
1

b

a

ab

c/b

b/c (a/b)/(c/b) = (a/c)/(b/c)
a/c

c

a/(a/b) = b/(b/a)

1/a = 1

1

a/1 = a

1
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2nd abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra ⟨A,1, /⟩)

a/1 = a (1)

(a/b)/(c/b) = (a/c)/(b/c) (4)

(a/b)/a = 1 (5)

a/(a/b) = b/(b/a) (6)

Lemma (Some CRA laws)

a/a = 1 (a/b)/c = (a/c)/b

1/a = 1 (a/b)/(b/a) = a/b

commutative BCK algebra with relative cancellation (Dvurečenskij & Graziano)
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2nd abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra ⟨A,1, /⟩)

a/1 = a (1)

(a/b)/(c/b) = (a/c)/(b/c) (4)

(a/b)/a = 1 (5)

a/(a/b) = b/(b/a) (6)

Example (Some CRAs)

⟨N,0, −̇⟩, ⟨Pos,1, /· ⟩, ⟨Mst(A), []̸ ,−⟩, ⟨R≥0,0, −̇⟩, ⟨R≥1,1,÷⟩, . . . , all mentioned
and more: ⟨{0,1},0, −̇⟩, ⟨Set(A), ∅,−⟩, . . . , sub-CRAs by downward-closing
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CRA derived operations

Definition (Derived operations ⩽, ∧, ·, ∨ for CRA ⟨A,1, /⟩)

a ⩽ b := a/b = 1

a ∧ b := a/(a/b)

a · b := c if a/c = 1 and c/a = b (partial)

a ∨ b := a · (b/a) (partial)

Lemma (Satisfaction of algebraic IE laws for CRAs)

• ⟨A,⩽⟩ is a

•
• ⟨A,1, ·⟩ is a partial commutative monoid; a ⩽ b iff a · c = b for some c;

• ⟨A,∨⟩ is a partial join-semilattice; a ⩽ b iff a ∨ b = b; 1 ∨ a = a
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CRA derived operations

Example

CRA N R≥0 Mst(A) Set(A) Pos

unit 1 0 0 []̸ ∅ 1

residual / −̇ −̇ − − /·
natural order ⩽ ≤ ≤ +⊆ ⊆ |
total order? ✓ ✓ ✗ ✗ ✗

well-founded? ✓ ✗ ✓ (fin) ✓ (fin) ✓

meet ∧ min min ∩ ∩ gcd

product · + + ⊎ ∪ (if ↓) ·
join ∨ max max ∪ ∪ lcm

Lemma (Satisfaction of algebraic IE laws for CRAs)

• ⟨A,⩽⟩ is a

•
• ⟨A,1, ·⟩ is a partial commutative monoid; a ⩽ b iff a · c = b for some c;

• ⟨A,∨⟩ is a partial join-semilattice; a ⩽ b iff a ∨ b = b; 1 ∨ a = a
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a · b := c if a/c = 1 and c/a = b

a ∨ b := a · (b/a)

Lemma (Satisfaction of algebraic IE laws for CRAs)

• ⟨A,⩽⟩ is a partial order; enables proving a = b by inclusions a ⩽ b and b ⩽ a

•
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CRA derived operations

Definition (Derived operations ⩽, ∧, ·, ∨ for CRA ⟨A,1, /⟩)

a ⩽ b := a/b = 1

a ∧ b := a/(a/b)

a · b := c if a/c = 1 and c/a = b

a ∨ b := a · (b/a)

Lemma (Satisfaction of algebraic IE laws for CRAs)

• ⟨A,⩽⟩ is a partial ℓattice; a ∨ (a ∧ b) ≃ a and a ∧ (a ∨ b) ≃ a if (a ∨ b)↓
• ⟨A,∧⟩ is a meet-semilattice; a ⩽ b iff a ∧ b = a; 1 ∧ a = 1
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CRA derived operations

Definition (Derived operations ⩽, ∧, ·, ∨ for CRA ⟨A,1, /⟩)

a ⩽ b := a/b = 1

a ∧ b := a/(a/b)

a · b := c if a/c = 1 and c/a = b

a ∨ b := a · (b/a)

Lemma (Satisfaction of algebraic IE laws for CRAs)

• ⟨A,⩽⟩ is a partial lattice; a ∨ (a ∧ b) ≃ a and a ∧ (a ∨ b) ≃ a if (a ∨ b)↓
• ⟨A,∧,∨⟩ is a partial distributive lattice; (a∨b)∧ c ≃ (a∧ c)∨ (b∧ c) if (a∨b)↓
• ⟨A,1, ·⟩ is a partial commutative monoid; a ⩽ b iff a · c = b for some c;

• ⟨A,∨⟩ is a partial join-semilattice; a ⩽ b iff a ∨ b = b; 1 ∨ a = a
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IE for CRAs

Theorem (Inclusion / exclusion for finite family aI)

O :=

 ∏
∅⊂J⊆

o
I

∧
aJ

 ↓ and E :=

 ∏
∅⊂J⊆

e
I

∧
aJ

 ↓ =⇒
∨

aI ≃ O/E and E ⩽ O

How general is this?

Versions of IE we know of are instances, e.g. probabilities.
Novel (?) instance, measurable multisets, next up.
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 ↓ and E :=

 ∏
∅⊂J⊆

e
I

∧
aJ

 ↓ =⇒
∨

aI ≃ O/E and E ⩽ O

Proof.

algebraic version of proof by induction on |I| using IE laws for CRAs and

(b/a) ∧ (c/a) = (c/a)/(c/b) = (b ∧ c)/(a ∧ c)

(a · b)/(c · d) = (a/c)/(d/b) if c ⩽ a, b ⩽ d and (a · b)↓, (c · d)↓
(a · b) ∧ c ≃ (a ∧ c) · (b ∧ (c/a)) if (a · b)↓

How general is this?

Versions of IE we know of are instances, e.g. probabilities.
Novel (?) instance, measurable multisets, next up.

TeReSe, Nijmegen (Hybrid); 8–6–2022 10



IE for CRAs

Theorem (Inclusion / exclusion for finite family aI)

O :=

 ∏
∅⊂J⊆

o
I

∧
aJ

 ↓ and E :=

 ∏
∅⊂J⊆

e
I

∧
aJ

 ↓ =⇒
∨

aI ≃ O/E and E ⩽ O

How general is this?

Versions of IE we know of are instances, e.g. probabilities.
Novel (?) instance, measurable multisets, next up.

TeReSe, Nijmegen (Hybrid); 8–6–2022 10



2nd abstraction: IE for measurable multisets

Definition

A algebra if A ⊆ ℘(A) with A ∈ A and closed under union and complement

Theorem (IE for finite family of measurable multisets / sets)

⋃
MI =

(⊎
∅⊂J⊆

o
I

⋂
MJ

)
−

(⊎
∅⊂J⊆

e
I

⋂
MJ

)

µ(
⋃

AI) =

(∑
∅⊂J⊆

o
I
µ(
⋂

AJ)

)
−̇

(∑
∅⊂J⊆

e
I
µ(
⋂

AJ)

)

Proof.
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2nd abstraction: IE for measurable multisets

Definition

A algebra if A ⊆ ℘(A) with A ∈ A and closed under union and complement

formally, A sub-algebra of the Boolean algebra ℘(A)
simple case of algebra in measure theory where closed under countable union
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2nd abstraction: IE for measurable multisets

Definition

A algebra if A ⊆ ℘(A) with A ∈ A and closed under union and complement

Definition (multiset M being A-measurable)

• Mi ∈ A for each i, with Mi := {a | M(a) = i} (set at height i of M)

• M>i = ∅ for some i, with M>i :=
⋃

j>iM
j = {a | M(a) > i} (least i is height of M)

Theorem (IE for finite family of measurable multisets / sets)

⋃
MI =

(⊎
∅⊂J⊆

o
I

⋂
MJ

)
−

(⊎
∅⊂J⊆

e
I

⋂
MJ

)

µ(
⋃

AI) =

(∑
∅⊂J⊆

o
I
µ(
⋂

AJ)

)
−̇

(∑
∅⊂J⊆

e
I
µ(
⋂

AJ)

)

Proof.

TeReSe, Nijmegen (Hybrid); 8–6–2022 11



2nd abstraction: IE for measurable multisets

Definition

A algebra if A ⊆ ℘(A) with A ∈ A and closed under union and complement

Definition (multiset M being A-measurable)

• Mi ∈ A for each i, with Mi := {a | M(a) = i} (set at height i of M)

• M>i = ∅ for some i, with M>i :=
⋃

j>iM
j = {a | M(a) > i} (least i is height of M)

set measurable iff it is so viewed as multiset

Theorem (IE for finite family of measurable multisets / sets)

⋃
MI =

(⊎
∅⊂J⊆

o
I

⋂
MJ

)
−

(⊎
∅⊂J⊆

e
I

⋂
MJ

)

µ(
⋃

AI) =

(∑
∅⊂J⊆

o
I
µ(
⋂

AJ)

)
−̇

(∑
∅⊂J⊆

e
I
µ(
⋂

AJ)

)

Proof.

TeReSe, Nijmegen (Hybrid); 8–6–2022 11



2nd abstraction: IE for measurable multisets

Definition

A algebra if A ⊆ ℘(A) with A ∈ A and closed under union and complement

Definition (multiset M being A-measurable)

• Mi ∈ A for each i, with Mi := {a | M(a) = i} (set at height i of M)

• M>i = ∅ for some i, with M>i :=
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j>iM
j = {a | M(a) > i} (least i is height of M)

Lemma (CRA)

• sets Mi at height i partition A
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A algebra if A ⊆ ℘(A) with A ∈ A and closed under union and complement
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• M>i = ∅ for some i, with M>i :=
⋃

j>iM
j = {a | M(a) > i} (least i is height of M)

Lemma (CRA)

• sets Mi at height i partition A
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Definition
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Definition (multiset M being A-measurable)

• Mi ∈ A for each i, with Mi := {a | M(a) = i} (set at height i of M)

• M>i = ∅ for some i, with M>i :=
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j>iM
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Lemma (CRA)

• sets Mi at height i partition A

• M>0 is support of M ; M empty iff height 0
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2nd abstraction: IE for measurable multisets

Definition

function µ from algebra A to non-negative reals is measure if

• µ(∅) = 0

• µ(A ∪ B) = µ(A) + µ(B) for A,B ∈ A and disjoint

extended to measurable multisets by µ(M) :=
∑

iµ(M
>i)
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2nd abstraction: IE for measurable multisets

Definition
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[a,a,b,b,b,b,c,e,e,e,e,e,f,f]

b c d e f

5

6

4

3

2

1

0 a
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2nd abstraction: IE for measurable multisets

Definition

function µ from algebra A to non-negative reals is measure if

• µ(∅) = 0

• µ(A ∪ B) = µ(A) + µ(B) for A,B ∈ A and disjoint

extended to measurable multisets by µ(M) :=
∑
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2nd abstraction: IE for measurable multisets

Theorem (IE for finite family of measurable multisets / sets)
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for measurable multisets: instance of IE for CRAs
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the IE?

Holler

I like neither the partial · nor the binary / because they are so ugly !

Sooth

bits : natural numbers : integers

⟨B,0, −̇⟩ : ⟨N,0, −̇,+⟩ : ⟨Z,0, (−),+,min,max⟩
CRA : CRAC : commutative lattice-ordered group

⟨A,1, /⟩ : ⟨A,1, /, ·⟩ : ⟨A,1,−1, ·,∧,∨⟩

where B := {0,1} and a CRAC is a CRA with composition ·
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From CRAs to CRACs

Definition (CRA with composition ⟨A,1, /, ·⟩)

a/1 = a (1)

(a/b)/(c/b) = (a/c)/(b/c) (4)

(a/b)/a = 1 (5)

a/(a/b) = b/(b/a) (6)

c/(a · b) = (c/a)/b (7)

(a · b)/c = (a/c) · (b/(c/a)) (8)

1 · 1 = 1 (9)
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From CRAs to CRACs

a · b

b/(c/a)
(c/a)/b

c/(a · b)

b

c/a

c

a a/c

a/b (a/b)/a = 1

a/(a/b)

a/b

b

a/b

a

1 1

1/a = 1

a/(a/b) = b/(b/a)

1

(a/c) · (b/(c/a))

b/(b/a)

b

b/a

a
a/1 = a

1

c

a/c
(a/b)/(c/b) = (a/c)/(b/c)b/c

c/b

b a

a

b

b/a

a
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From CRAs to CRACs

b

a/b
a

b/a

a

b/(c/a)b

c/a
a · b

(a/c) · (b/(c/a))

c

1

a/(a/b) = b/(b/a)
11

a

a/b

b

b/(b/a)
a/(a/b)

(a/b)/a = 1a/b

b/a

b

a

a

c/b

b

c

a/c
(a/b)/(c/b) = (a/c)/(b/c)b/c

a/c

(c/a)/b

c/(a · b)
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From CRAs to CRACs

Definition (CRA with composition ⟨A,1, /, ·⟩)

a/1 = a (1)

(a/b)/(c/b) = (a/c)/(b/c) (4)

(a/b)/a = 1 (5)

a/(a/b) = b/(b/a) (6)

c/(a · b) = (c/a)/b (7)

(a · b)/c = (a/c) · (b/(c/a)) (8)

1 · 1 = 1 (9)

Composition in CRA vs. CRAC

in CRAs with derived composition · partial versions of (7)–(8) hold:
c/(a · b) = (c/a)/b and (a · b)/c ≃ (a/c) · (b/(c/a)) if (a · b)↓, and 1 · 1 = 1
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From CRAs to CRACs

Definition (CRA with composition ⟨A,1, /, ·⟩)

a/1 = a (1)

(a/b)/(c/b) = (a/c)/(b/c) (4)

(a/b)/a = 1 (5)

a/(a/b) = b/(b/a) (6)

c/(a · b) = (c/a)/b (7)

(a · b)/c = (a/c) · (b/(c/a)) (8)

1 · 1 = 1 (9)

Composition in CRAC vs. CRA

composition · in CRACs satisfies the laws of derived composition in CRAs:
a/(a · b) = (a/a)/b = 1 and (a · b)/a = 1 · b = (1 · b)/((1 · b)/b) = b.
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C=⟨A, 1, /⟩ embeds in CRAC C+=⟨Mst(A)/≡, []̸ ,(,⊎⟩

Idea (commutative case of residual system construction)

adjoin compositions of objects freely, modulo AC, respecting residuation

Theorem (Dvurečenskij)

C embeds downward-closedly in C+

Corollary

any partial monoid homomorphism f from C into a monoid M := ⟨B,1, ◦⟩ factors
via embedding and a unique monoid homomorpism h from C+ to M

Proof.

let f be such that if c = a · b then f(c) = a ◦ b. by monoid homomorphism only
choice h : [a0, . . . , an−̇1] 7→ f(a0) ◦ . . . ◦ f(an). that h is a function independent of
representative, follows from that if [aI] ≡ [bJ]. then [aI] ≡ [cIJ] ≡ [bJ] for some
matrix cIJ (above Riesz decomposition). conclude by rearranging and assumption
from f(a0) ◦ . . . ◦ f(an−̇1) = f(c00) ◦ . . . ◦ f(c(n−̇1)(m−̇1)) = f(b0) ◦ . . . ◦ f(bm−̇1).
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C=⟨A, 1, /⟩ embeds in CRAC C+=⟨Mst(A)/≡, []̸ ,(,⊎⟩

Idea (commutative case of residual system construction)

carrier of C+: multisets of objects modulo projection equivalence

Theorem (Dvurečenskij)
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C=⟨A, 1, /⟩ embeds in CRAC C+=⟨Mst(A)/≡, []̸ ,(,⊎⟩

Residuation in C+ by tiling with diamonds of C (Lévy, Stark, Terese)

abbreviate [aI] to [ai | i ∈ I]. let I := {0, . . . ,n −̇ 1} and J := {0, . . . ,m −̇ 1}.

• residual [aI]( [bJ] of [aI] (left) after [aI] (bottom) is [a′
I] (right) by tiling

• projection equivalence [aI] ≡ [bJ] if [a′
I] = []̸ = [b′

J]

bi+1j := bij/aij

bij

ai := ai0 a′
i := aimaij+1 := aij/bij

aij

b′
j := bnj

bj := b0j

Theorem (Dvurečenskij)

C embeds downward-closedly in C+

Corollary

any partial monoid homomorphism f from C into a monoid M := ⟨B,1, ◦⟩ factors
via embedding and a unique monoid homomorpism h from C+ to M

Proof.

let f be such that if c = a · b then f(c) = a ◦ b. by monoid homomorphism only
choice h : [a0, . . . , an−̇1] 7→ f(a0) ◦ . . . ◦ f(an). that h is a function independent of
representative, follows from that if [aI] ≡ [bJ]. then [aI] ≡ [cIJ] ≡ [bJ] for some
matrix cIJ (above Riesz decomposition). conclude by rearranging and assumption
from f(a0) ◦ . . . ◦ f(an−̇1) = f(c00) ◦ . . . ◦ f(c(n−̇1)(m−̇1)) = f(b0) ◦ . . . ◦ f(bm−̇1).
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C=⟨A, 1, /⟩ embeds in CRAC C+=⟨Mst(A)/≡, []̸ ,(,⊎⟩

Residuation in C+ by tiling with diamonds of C

abbreviate [aI] to [ai | i ∈ I]. let I := {0, . . . ,n −̇ 1} and J := {0, . . . ,m −̇ 1}.

• residual [aI]( [bJ] of [aI] after [aI] is [a′
I] by tiling

• projection equivalence [aI] ≡ [bJ] if [a′
I] = []̸ = [b′

J] ([aI] ⊑ [bJ] and [bJ] ⊑ [aI])

bi+1j := bij/aij

bij

ai := ai0 a′
i := aimaij+1 := aij/bij

aij

b′
j := bnj

bj := b0j

Theorem (Dvurečenskij)

C embeds downward-closedly in C+

Corollary

any partial monoid homomorphism f from C into a monoid M := ⟨B,1, ◦⟩ factors
via embedding and a unique monoid homomorpism h from C+ to M

Proof.

let f be such that if c = a · b then f(c) = a ◦ b. by monoid homomorphism only
choice h : [a0, . . . , an−̇1] 7→ f(a0) ◦ . . . ◦ f(an). that h is a function independent of
representative, follows from that if [aI] ≡ [bJ]. then [aI] ≡ [cIJ] ≡ [bJ] for some
matrix cIJ (above Riesz decomposition). conclude by rearranging and assumption
from f(a0) ◦ . . . ◦ f(an−̇1) = f(c00) ◦ . . . ◦ f(c(n−̇1)(m−̇1)) = f(b0) ◦ . . . ◦ f(bm−̇1).
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C=⟨A, 1, /⟩ embeds in CRAC C+=⟨Mst(A)/≡, []̸ ,(,⊎⟩

Definition (of components of C+)

• carrier: finite multisets over A modulo projection equivalence ≡
(projection may be computed by rules (7)–(8) eliding units 1 of C)

• unit: empty multiset []̸
• residuation( : by tiling with diamonds of C
• composition: multiset sum ⊎
• embedding of C into C+: a 7→ [a]

Theorem (Dvurečenskij)

C embeds downward-closedly in C+

Corollary

any partial monoid homomorphism f from C into a monoid M := ⟨B,1, ◦⟩ factors
via embedding and a unique monoid homomorpism h from C+ to M

Proof.

let f be such that if c = a · b then f(c) = a ◦ b. by monoid homomorphism only
choice h : [a0, . . . , an−̇1] 7→ f(a0) ◦ . . . ◦ f(an). that h is a function independent of
representative, follows from that if [aI] ≡ [bJ]. then [aI] ≡ [cIJ] ≡ [bJ] for some
matrix cIJ (above Riesz decomposition). conclude by rearranging and assumption
from f(a0) ◦ . . . ◦ f(an−̇1) = f(c00) ◦ . . . ◦ f(c(n−̇1)(m−̇1)) = f(b0) ◦ . . . ◦ f(bm−̇1).
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let f be such that if c = a · b then f(c) = a ◦ b. by monoid homomorphism only
choice h : [a0, . . . , an−̇1] 7→ f(a0) ◦ . . . ◦ f(an). that h is a function independent of
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C=⟨A, 1, /⟩ embeds in CRAC C+=⟨Mst(A)/≡, []̸ ,(,⊎⟩
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• carrier: finite multisets over A modulo projection equivalence ≡
• unit: empty multiset []̸
• residuation( : by tiling with diamonds of C
• composition: multiset sum ⊎
• embedding of C into C+: a 7→ [a]
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C=⟨A, 1, /⟩ embeds in CRAC C+=⟨Mst(A)/≡, []̸ ,(,⊎⟩

Example

CRA C := ⟨{0, . . . ,9},0, −̇⟩ of digits;

• has some compositions, e.g. 7 = 3 + 4 (since 3 −̇ 7 = 0 and 7 −̇ 3 = 4) but
most not, e.g. each of 7 + 6, 9 + 4, 4 + 4 + 4 not defined in C

• [7,6] and [9,4] represent first two in C+; should be projection equivalent . . .

• [7,6]( [9,4]
(7)
= ([7,6]( [9])( [4]

(8)
= [7 −̇ 9,6 −̇ (9 −̇ 7)]( [4] = [0,4]( [4] = []̸

[9,4]( [7,6]
(7)
= ([9,4]( [7])( [6]

(8)
= [9 −̇ 7,4 −̇ (7 −̇ 9)]( [6] = [2,4]( [6] = []̸

• C+ isomorphic to ⟨N,0, −̇,+⟩

Theorem (Dvurečenskij)

C embeds downward-closedly in C+

Corollary

any partial monoid homomorphism f from C into a monoid M := ⟨B,1, ◦⟩ factors
via embedding and a unique monoid homomorpism h from C+ to M

Proof.

let f be such that if c = a · b then f(c) = a ◦ b. by monoid homomorphism only
choice h : [a0, . . . , an−̇1] 7→ f(a0) ◦ . . . ◦ f(an). that h is a function independent of
representative, follows from that if [aI] ≡ [bJ]. then [aI] ≡ [cIJ] ≡ [bJ] for some
matrix cIJ (above Riesz decomposition). conclude by rearranging and assumption
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that ≡ is a congruence follows by cubing with (4).
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From CRACs to commutative ℓ-groups

Definition (Commutative (abelian) lattice-ordered group)

A commutative ℓ-group is structure G := ⟨A,1,−1, ·,∧,∨⟩ with ⟨A,∧,∨⟩ a lattice,
⟨A,1,−1, ·⟩ a commutative group, where · preserves order a ⩽ b =⇒ a · c ⩽ b · c

Remark

for any such G, lattice ⟨A,∧,∨⟩ is distributive
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CRAC C=⟨A, 1, /, ·⟩ embeds in commutative ℓ-group Ĉ

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

Definition

Ĉ := ⟨{a
b | a ∧ b = 1}, 1

1 , (
a
b)

−1 := b
a ,

a
b · c

d := (a/d)·(c/b)
(d/a)·(b/c) ,

a
b ∧ c

d := a∧c
b∨d ,

a
b ∨ c

d := a∨c
b∧d⟩
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CRAC C=⟨A, 1, /, ·⟩ embeds in commutative ℓ-group Ĉ

Definition (of components of Ĉ)

• carrier: (formal) fractions a
b with a,b ∈ A that are normalised: a ∧ b = 1

• unit: 1
1

• inverse: (a
b)

−1 := b
a

• composition: a
b · c

d := (a/d)·(c/b)
(d/a)·(b/c)

• meet: a
b ∧ c

d := a∧c
b∨d

• join: a
b ∨ c

d := a∨c
b∧d

• embedding ̂ of C in Ĉ: a 7→ a
1

a/b 7→ (â · (b̂)−1) ∨ 1, other operations to ‘themselves’
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CRAC C=⟨A, 1, /, ·⟩ embeds in commutative ℓ-group Ĉ

Definition

Ĉ := ⟨{a
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a
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CRAC C=⟨A, 1, /, ·⟩ embeds in commutative ℓ-group Ĉ

Definition

Ĉ := ⟨{a
b | a ∧ b = 1}, 1

1 , (
a
b)

−1 := b
a ,

a
b · c

d := (a/d)·(c/b)
(d/a)·(b/c) ,

a
b ∧ c

d := a∧c
b∨d ,

a
b ∨ c

d := a∨c
b∧d⟩

Example

⟨N,1, /· , ·⟩ gives (normalised) fractions n
m ; 6

5 · 5
2 = 3

1 , 6
5 ∧ 5

2 = 1
10 , and 6

5 ∨ 5
2 = 30

1 .

TeReSe, Nijmegen (Hybrid); 8–6–2022 16



CRAC C=⟨A, 1, /, ·⟩ embeds in commutative ℓ-group Ĉ

Definition

Ĉ := ⟨{a
b | a ∧ b = 1}, 1

1 , (
a
b)

−1 := b
a ,

a
b · c

d := (a/d)·(c/b)
(d/a)·(b/c) ,

a
b ∧ c

d := a∧c
b∨d ,

a
b ∨ c

d := a∨c
b∧d⟩

Theorem (Dvurečenskij)

C embeds in positive cone Ĉ≥1 (elements ≥ unit) of commutative ℓ-group Ĉ

Easy using ATP e.g. Prover9
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CRAC C=⟨A, 1, /, ·⟩ embeds in commutative ℓ-group Ĉ

Definition

Ĉ := ⟨{a
b | a ∧ b = 1}, 1

1 , (
a
b)

−1 := b
a ,

a
b · c

d := (a/d)·(c/b)
(d/a)·(b/c) ,

a
b ∧ c

d := a∧c
b∨d ,

a
b ∨ c

d := a∨c
b∧d⟩

Theorem (Dvurečenskij)

C embeds in positive cone Ĉ≥1 of commutative ℓ-group Ĉ

Corollary

for CRA-expressions t, s, universal statement ∀a⃗.t = s is valid in CRACs iff

∀a⃗ ∈ G≥1 .̂t = ŝ is in commutative ℓ-groups G, for ̂ such that r̂/u := (̂r · (û)−1) ∨ 1

latter decidable (co-NP; Khisamiev, Weispfenning), so former decidable for CRAs
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IE for commutative ℓ-groups G := ⟨A, 1, −1, ·,∧,∨⟩

Example

• max (6,15,10) = min (6,15,10)+6+15+10−̇min (6,15)−̇min (15,10)−̇min (10,6)

• max (−3,6,1) = min (−3,6,1) +−3 + 6 + 1 −min (−3,6)−min (6,1)−min (1,−3)

Remark

alternatively in case all elements in aI are in positive cone G≥1:
rearrange rhs using · associ/commutative, −1 anti-automorphic as: ∏

∅⊆J⊆
o

I

∧
aJ

 /

 ∏
∅⊂J⊆

e
I

∧
aJ


and conclude by assumption from IE for CRAs (then also gives O ≥ E)
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Conclusions and questions / projects

commutative case

bits : natural numbers : integers

⟨B,0, −̇⟩ : ⟨N,0, −̇,+⟩ : ⟨Z,0, (−),+,min,max⟩
CRA : CRAC : commutative ℓ-group

⟨A,1, /⟩ : ⟨A,1, /, ·⟩ : ⟨A,1,−1, ·,∧,∨⟩

residual system / residual system with composition ≜
concurrent transition / computation system (Stark)
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Conclusions and questions / projects

non-commutative case?

rewrite system (Newman) : category : groupoid

multistep / development : rewrite sequence : valley (Church & Rosser)

simple braids : positive braids : braids

? : ? : Garside theory (Dehornoy)

residual system : RS with composition : ? (see appendix)

parallel : sequential : invert

residual system / residual system with composition ≜
concurrent transition / computation system (Stark)

TeReSe, Nijmegen (Hybrid); 8–6–2022 18



Further questions / projects

• decide equational theory of CRAs / CRACs / commutative ℓ-groups by TRS?

• CRAs complete for universal statements (in signature) on N?

• integrate CRA / CRAC / commutative ℓ-group ATP in proof assistants
Isabelle / Coq theories of multisets distinct (finite / infinite support; CRAs!)

• conversions are obtained by closing symmetrically then transitively
the same for CRA C: first Ĉ (not a partial group; what?) then (Ĉ)+?
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Some opinions

1 multisets (AC) precede sets (ACI)

2 signed and / or measurable multisets interesting (see appendix)

3 parallel analysis (residuation) precedes sequential analysis (composition)

4 rewrite systems precede categories

5 commutative ℓ-groups are subdirect products of linear groups
are multisets (with Visser); use as Leitmotiv for multiset results

6 not just (∞-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)

7 CRAs give partial commutative monoids, but allow equational reasoning

8 diagrams as formal pictures; diagram = cyclic conversion

9 Term Rewriting Systems, Terese, CUP 2003, should be made available online

10 the rewriting world will miss the contributions by Hans
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1 multisets (AC) precede sets (ACI)

2 signed and / or measurable multisets interesting (see appendix)
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Some opinions

1 multisets (AC) precede sets (ACI)
2 signed and / or measurable multisets interesting (see appendix)
3 parallel analysis (residuation) precedes sequential analysis (composition)
4 rewrite systems precede categories
5 commutative ℓ-groups are subdirect products of linear groups

are multisets (with Visser); use as Leitmotiv for multiset results
6 not just (∞-)categories / groupoids, but rewrite systems

e.g., termination no reflexivity, conversion no cancellation (dagger)
7 CRAs give partial commutative monoids, but allow equational reasoning
8 diagrams as formal pictures; diagram = cyclic conversion

a · b · a−1 · b−1 commutator measures non-commutativity of peak (a,b)
(a/b) · (b/a) measures metric distance of peak (a,b) in CRACs
ϕ+ ψ − ω − χ measures balance of peak (ϕ, χ) with valley (ψ, ω) (Newman)
valley (ψ/ϕ, ϕ/ψ) witnesses orthogonality / lub / lcm / pushout of peak (ϕ, ψ)
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CRA problems in disguise: EWD 1313

Edsger W. Dijkstra Archive, EWD 1313, Austin, 27 November 2001
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Calculational proof of EWD1313 in CRAs

Lemma

a ∧ b = 1 =⇒ a ∧ d = a ∧ c if d := b · c is defined, i.e. d/b = c and b/d = 1
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Calculational proof of EWD1313 in CRAs

Lemma

a ∧ b = 1 =⇒ a ∧ d = a ∧ c if d := b · c is defined, i.e. d/b = c and b/d = 1

Proof.

a ∧ d
meet
= a/(a/d)
(1)
= a/((a/d)/1)

hyp
= a/((a/d)/(b/d))
(4)
= a/((a/b)/(d/b))

hyp
= a/(a/(d/b))

hyp,meet
= a ∧ c
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Calculational proof of EWD1313 in CRAs

Lemma

a ∧ b = 1 =⇒ a ∧ d = a ∧ c if d := b · c is defined, i.e. d/b = c and b/d = 1

Corollary

• for positive numbers, gcd(n,m) = 1 =⇒ gcd(n,m · k) = gcd(n, k)

• for natural numbers, min(n,m) = 0 =⇒ min(n,m + k) = min(n, k)

• for multisets, M ∩ N = []̸ =⇒ M ∩ (N ⊎ L) = M ∩ L

• . . .
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Calculational proof of EWD1313 in CRAs

Lemma

a ∧ b = 1 =⇒ a ∧ d = a ∧ c if d := b · c is defined, i.e. d/b = c and b/d = 1

Example

similar example features in Mechanical Mathematicians (Bentkamp &al.)

(gcd(n,m) = 1 and ℓ | n · m and n′ = gcd(ℓ,n) and m′ = gcd(ℓ,m)) =⇒

(n′ · m′ | ℓ and ℓ | n′ · m′)

is a consequence of a provable CRA statement:

if a ∧ b = 1 and (a · b)↓ and d ⩽ a · b, then (d ∧ a) · (d ∧ b) ≃ d
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Residual algebra?
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Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition ◦:

◦ ωψ χϕ
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Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition ◦:

ψϕ ωχ

ψ/χχ/ψ
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Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition ◦:

ϕ · (χ/ψ) ω · (ψ/χ)
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Residual systems?

Embedding residual systems with composition in groupoids?

induces groupoid by quotienting out ▷◁:

▷◁ ωψ χϕ
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Residual systems?

Embedding residual systems with composition in groupoids?

(ϕ, ψ) ▷◁ (χ, ω) if some valley makes both peaks (ϕ, χ) and (ψ, ω) commute:

▷◁ ωψ χϕ
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Residual systems?

Embedding residual systems with composition in groupoids?

(ϕ, ψ) ▷◁ (χ, ω) if some valley makes both peaks (ϕ, χ) and (ψ, ω) commute:

ϕ

χψ

ω
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Residual systems?

Embedding residual systems with composition in groupoids?

ϕ

χψ

ω
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Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:

ϕ ψ
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Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:

ϕ ψ

(ψ−1/ϕ−1)−1 (ϕ−1/ψ−1)−1

ϕ̂ ψ̂
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