Inclusion Exclusion revisited

Vincent van Oostrom ${ }^{1}$
https://people.bath.ac.uk/vvo21/

[^0]
inclusion / exclusion principle

$1^{\text {st }}$ abstraction: IE for multisets
$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

embedding

$1^{\text {st }}$ embedding: CRAs in CRAs with composition $2^{\text {nd }}$ embedding: CRACs in commutative ℓ-groups

conclusions

Inclusion / exclusion principle for 2 sets (IE_{2})

$|A \cup B|=|A|+|B|-|A \cap B|$

Inclusion / exclusion principle for 3 sets (IE_{3})

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C|
$$

Inclusion / exclusion principle (IE)

Theorem (Inclusion / exclusion (de Moivre, da Silva, Sylvester 17/18th))
for finite family $A_{I}:=\left(A_{i}\right)_{i \in I}$ of finite sets

$$
\left|\bigcup A_{l}\right|=\sum_{\emptyset \subset \jmath \subseteq 1}(-1)^{U \mid-1} \cdot\left|\bigcap A_{\jmath}\right|
$$

Inclusion / exclusion principle (IE)

Theorem (Inclusion / exclusion (de Moivre, da Silva, Sylvester (17/18th))
for finite family $A_{1}:=\left(A_{i}\right)_{i \in I}$ of finite sets

$$
\left|\bigcup A_{l}\right|=\sum_{\emptyset \subset \jmath \subseteq \leq}(-1)^{U \mid-1} \cdot\left|\bigcap A_{j}\right|
$$

Example

for $I:=\{1,2,3\}, A_{1}:=\{a, b\}, A_{2}:=\{b, c\}$, and $A_{3}:=\{c, a\}$

$$
|\{a, b, c\}|=3=|\{a, b\}|+|\{b, c\}|+|\{c, a\}|-|\{b\}|-|\{c\}|-|\{a\}|+|\emptyset|
$$

$$
\left|\cup A_{\|}\right|=\sum_{\emptyset \mid\rfloor \subseteq \subseteq}(-1)^{\|-1} \cdot\left|\cap A_{j}\right| \text { by double counting }
$$

Standard double counting proof.

$$
|A \cup B|=|A|+|B|-|A \cap B| \quad \text { for } x \in A \cap B ?
$$

$$
\left|\cup A_{l}\right|=\sum_{\emptyset\lceil\mid \leq 1}(-1)^{\mid l-1} \cdot\left|\cap A_{j}\right| \text { by double counting }
$$

Standard double counting proof.

$$
1=2-1 \quad \text { for } x \in A \cap B
$$

$\left|\bigcup A_{l}\right|=\sum_{\emptyset \subset J \subseteq I}(-1)^{U \mid-1} \cdot\left|\cap A_{\jmath}\right|$ by double counting

Standard double counting proof.

$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C| \quad$ for $x \in A \cap B \cap C ?$

$\left|U A_{l}\right|=\sum_{\emptyset\lceil\mid \subseteq I}(-1)^{\mid l-1} \cdot\left|\cap A_{j}\right|$ by double counting

Standard double counting proof.

$$
1=3-3+1 \text { for } x \in A \cap B \cap C
$$

$\left|\bigcup^{\prime}\right|=\sum_{\emptyset \subset J \subseteq I}(-1)^{U \mid-1} \cdot\left|\cap A_{j}\right|$ by double counting

Standard double counting proof.

count for each individual $x \in \bigcup A_{\text {/ }}$ depending on $\#(x):=\left|\left\{i \mid x \in A_{i}\right\}\right|$:

$$
\begin{array}{lll}
1=1 & \text { if } \#(x)=1 \\
1=2-1 & & \text { if } \#(x)=2 \\
1=3-3+1 & \text { if } \#(x)=3 \\
1=4-6+4-1 & & \text { if } \#(x)=4 \\
1=\ldots ? \quad \ldots & & \text { if } \#(x)=n
\end{array}
$$

$\left|\bigcup^{\prime}\right|=\sum_{\emptyset \subset J \subseteq I}(-1)^{U \mid-1} \cdot\left|\cap A_{j}\right|$ by double counting

Standard double counting proof.

count for each individual $x \in \bigcup A_{\text {, }}$ depending on $\#(x):=\left|\left\{i \mid x \in A_{i}\right\}\right|$:

$$
\begin{array}{lll}
1=1 & \text { if } \#(x)=1 \\
1=2-1 & \text { if } \#(x)=2 \\
1=3-3+1 & \text { if } \#(x)=3 \\
1=4-6+4-1 & \text { if } \#(x)=4 \\
1=\sum_{1 \leq j \leq n}(-1)^{j-1}\binom{n}{j} & \text { if } \#(x)=n
\end{array}
$$

$\left|\bigcup^{\prime}\right|=\sum_{\emptyset \subset J \subseteq I}(-1)^{U \mid-1} \cdot\left|\cap A_{j}\right|$ by double counting

Standard double counting proof.

count for each individual $x \in \bigcup A_{\text {/ }}$ depending on $\#(x):=\left|\left\{i \mid x \in A_{i}\right\}\right|$:

$$
\begin{array}{lll}
1=1 & \text { if } \#(x)=1 \\
1=2-1 & \text { if } \#(x)=2 \\
1=3-3+1 & \text { if } \#(x)=3 \\
1=4-6+4-1 & \text { if } \#(x)=4 \\
1=\sum_{1 \leq j \leq n}(-1)^{j-1}\binom{n}{j} & \text { if } \#(x)=n
\end{array}
$$

by double counting: $\sum_{0 \leq j \leq n}(-1)^{j}\binom{n}{j} \Leftarrow(1-1)^{n} \Rightarrow 0$

Identities analogous to $\mathrm{IE}_{2}($ for $\mid \|=2)$?

$$
|A \cup B|=|A|+|B|-|A \cap B| \quad \text { for finite sets } A, B
$$

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m-\min (n, m)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
where - is monus, also known as cut-off minus; $n \div m=n-\min (n, m)$

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m \doteq \min (n, m) \\
\operatorname{Icm}(n, m) & =n \cdot m \cdot / \operatorname{gcd}(n, m)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
for positive natural numbers n, m
where $\cdot /$ is dovision, also known as cut-off division; $n \cdot / m=n / \operatorname{gcd}(n, m)$

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m-\min (n, m) \\
\operatorname{lcm}(n, m) & =n \cdot m \cdot / \operatorname{gcd}(n, m) \\
M \cup N & =M \uplus N-(M \cap N)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
for positive natural numbers n, m
for finite multisets M, N

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m-\min (n, m) \\
\operatorname{Icm}(n, m) & =n \cdot m \cdot / \operatorname{gcd}(n, m) \\
M \cup N & =M \uplus N-(M \cap N) \\
\max (x, y) & =x+y \div \min (x, y)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
for positive natural numbers n, m
for finite multisets M, N
for nonnegative real numbers x, y

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m-\min (n, m) \\
\operatorname{lcm}(n, m) & =n \cdot m \cdot / \operatorname{gcd}(n, m) \\
M \cup N & =M \uplus N-(M \cap N) \\
\max (x, y) & =x+y \div \min (x, y) \\
\max (x, y) & =x \cdot y \div \min (x, y)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
for positive natural numbers n, m
for finite multisets M, N
for nonnegative real numbers x, y
for x, y real numbers ≥ 1
where \div is truncated division; $x \div y=x / \min (x, y)$

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m-\min (n, m) \\
\operatorname{lcm}(n, m) & =n \cdot m \cdot / \operatorname{gcd}(n, m) \\
M \cup N & =M \uplus N-(M \cap N) \\
\max (x, y) & =x+y \div \min (x, y) \\
\max (x, y) & =x \cdot y \div \min (x, y)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
for positive natural numbers n, m
for finite multisets M, N
for nonnegative real numbers x, y
for x, y real numbers ≥ 1

Questions

IE principles for all of these?

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m-\min (n, m) \\
\operatorname{lcm}(n, m) & =n \cdot m \cdot / \operatorname{gcd}(n, m) \\
M \cup N & =M \uplus N-(M \cap N) \\
\max (x, y) & =x+y \div \min (x, y) \\
\max (x, y) & =x \cdot y \div \min (x, y)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
for positive natural numbers n, m
for finite multisets M, N
for nonnegative real numbers x, y
for x, y real numbers ≥ 1

Questions

IE principles for all of these? Yes, and more, and even for partial operations

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m-\min (n, m) \\
\operatorname{lcm}(n, m) & =n \cdot m \cdot / \operatorname{gcd}(n, m) \\
M \cup N & =M \uplus N-(M \cap N) \\
\max (x, y) & =x+y \div \min (x, y) \\
\max (x, y) & =x \cdot y \div \min (x, y)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
for positive natural numbers n, m
for finite multisets M, N
for nonnegative real numbers x, y
for x, y real numbers ≥ 1

Questions

IE principles for all of these? Yes, and more, and even for partial operations Prove them uniformly from simple axioms?

Identities analogous to $\mathrm{IE}_{2}($ for $|I|=2)$?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
\max (n, m) & =n+m-\min (n, m) \\
\operatorname{lcm}(n, m) & =n \cdot m \cdot / \operatorname{gcd}(n, m) \\
M \cup N & =M \uplus N-(M \cap N) \\
\max (x, y) & =x+y \div \min (x, y) \\
\max (x, y) & =x \cdot y \div \min (x, y)
\end{aligned}
$$

for finite sets A, B
for natural numbers n, m
for positive natural numbers n, m
for finite multisets M, N
for nonnegative real numbers x, y
for x, y real numbers ≥ 1

Questions

IE principles for all of these? Yes, and more, and even for partial operations Prove them uniformly from simple axioms? Yes, by abstracting inductive proof

$$
\left|\cup A_{l}\right|=\sum_{\emptyset \subset \jmath \subseteq I}(-1)^{U \|-1} \cdot\left|\cap A_{\jmath}\right| \text { by induction on \#sets }|I|
$$

Step case $I \cup\{k\}$ of standard proof by induction.

$$
\left|\bigcup A_{I \cup\{k\}}\right|
$$

$$
\left|\cup A_{l}\right|=\sum_{\emptyset \subset \jmath \subseteq I}(-1)^{U \|-1} \cdot\left|\cap A_{\jmath}\right| \text { by induction on \#sets }|I|
$$

Step case $I \cup\{k\}$ of standard proof by induction.

$$
\left|\bigcup A_{\backslash\{k\}}\right|={ }^{\mid E_{2}, \text { Usemil }} \quad\left|\bigcup A_{l}\right|+\left|A_{k}\right|-\left|\left(\bigcup A_{l}\right) \cap A_{k}\right|
$$

$\left|U A_{l}\right|=\sum_{\eta c \mid \leqq!}(-1)^{U-1} \cdot\left|\cap A_{j}\right|$ by induction on \#sets $||\mid$

Step case $I \cup\{k\}$ of standard proof by induction.

$$
\begin{aligned}
\left|\bigcup A_{I \cup\{k\}}\right|= & \left|\bigcup A_{l}\right|+\left|A_{k}\right|-\left|\left(\bigcup A_{l}\right) \cap A_{k}\right| \\
=\text { Unemi } \ell & \left|\bigcup A_{l}\right|+\left|A_{k}\right|-\left|\bigcup_{i \in I}\left(A_{i} \cap A_{k}\right)\right|
\end{aligned}
$$

$\left|\bigcup A_{l}\right|=\sum_{\emptyset \subset \jmath \subseteq I}(-1)^{U \mid-1} \cdot\left|\cap A_{\jmath}\right|$ by induction on \#sets $|I|$

Step case $I \cup\{k\}$ of standard proof by induction.

$$
\begin{aligned}
& \left|\bigcup A_{M\{k\}}\right|={ }^{\mathrm{IE}_{2}, \text { Usemi } \ell} \\
& \left|\bigcup A_{l}\right|+\left|A_{k}\right|-\left|\left(\bigcup A_{l}\right) \cap A_{k}\right| \\
& =\text { Undistr } \ell \\
& \left|\bigcup A_{l}\right|+\left|A_{k}\right|-\left|\bigcup_{i \in I}\left(A_{i} \cap A_{k}\right)\right| \\
& =2 \times \mathrm{IH} \\
& \left(\sum_{\emptyset \subset \jmath \subseteq l}(-1)^{|J|-1} \cdot\left|\bigcap A_{J}\right|\right)+\left|A_{k}\right|- \\
& \sum_{\emptyset \subset \jmath \subseteq I}(-1)^{J \mid-1} \cdot\left|\bigcap_{j \in J}\left(A_{j} \cap A_{k}\right)\right|
\end{aligned}
$$

$\left|\bigcup A_{l}\right|=\sum_{\emptyset \subset \jmath \subseteq I}(-1)^{U \mid-1} \cdot\left|\cap A_{\jmath}\right|$ by induction on \#sets $|I|$

Step case $I \cup\{k\}$ of standard proof by induction.

$$
\begin{array}{rlrl}
\left|\bigcup A_{I \cup\{k\}}\right|= & & \left|\bigcup A_{l}\right|+\left|A_{k}\right|-\left|\left(\bigcup A_{l}\right) \cap A_{k}\right| \\
& =\text { Unemi } \mid \\
= & & \left|\bigcup A_{l}\right|+\left|A_{k}\right|-\left|\bigcup_{i \in I}\left(A_{i} \cap A_{k}\right)\right| \\
=\text { nsemi } \ell, \text { cgroup } & & \left(\sum_{\emptyset \subset J \subseteq l}(-1)^{U /-1} \cdot\left|\cap A_{J}\right|\right)+\left|A_{k}\right|+ \\
& \sum_{\{k\} \subset J \subseteq ル\{k\}}(-1)^{|J|-1} \cdot\left|\cap A_{J}\right|
\end{array}
$$

$\left|\bigcup A_{l}\right|=\sum_{\emptyset \subset \jmath \subseteq I}(-1)^{U \mid-1} \cdot\left|\cap A_{\jmath}\right|$ by induction on \#sets $|I|$

Step case $I \cup\{k\}$ of standard proof by induction.

$$
\begin{aligned}
& \left|\bigcup A_{I \cup\{k\}}\right|={ }^{\mathrm{IE}_{2}, \text { Usemi } \ell} \quad\left|\bigcup A_{I}\right|+\left|A_{k}\right|-\left|\left(\bigcup A_{I}\right) \cap A_{k}\right| \\
& =\text { Undistr } \ell \\
& =\text { คsemi } \ell, \text { cgroup }\left(\sum_{\emptyset \subset \jmath \subseteq l}(-1)^{|J|-1} \cdot\left|\bigcap A_{J}\right|\right)+\left|A_{k}\right|+ \\
& \sum_{\{k\} \subset J \subseteq I \cup\{k\}}(-1)^{J /-1} \cdot\left|\bigcap A_{J}\right| \\
& =\text { cgroup } \quad \sum_{\emptyset \subset J \subseteq ル\{k\}}(-1)^{|J|-1} \cdot\left|\bigcap A_{j}\right|
\end{aligned}
$$

$1^{\text {st }}$ abstraction: IE for multisets

Example

for $I:=\{1,2,3\}, M_{1}:=[a, b], M_{2}:=[b, c]$, and $M_{3}:=[c, a]$

$$
[a, b, c]=[a, b] \uplus[b, c] \uplus[c, a]-[b]-[c]-[a] \uplus \emptyset
$$

$1^{\text {st }}$ abstraction: IE for multisets

Example

for $I:=\{1,2,3\}, M_{1}:=[a, b], M_{2}:=[b, c]$, and $M_{3}:=[c, a]$

$$
[a, b, c]=[a, b] \uplus[b, c] \uplus[c, a]-[b]-[c]-[a] \uplus \emptyset]
$$

Idea: multiplicities built in so no need for taking cardinalities by ||

$$
\begin{aligned}
& \bigcup / \bigcap \mapsto \text { multiset union } \cup(\text { maximum }) / \text { intersection } \cap \text { (minimum) } \\
& \sum /-\mapsto \text { multiset sum } \uplus(\text { addition }) / \text { difference }-(\text { subtraction })
\end{aligned}
$$

$1^{\text {st }}$ abstraction: IE for multisets

Example

for $I:=\{1,2,3\}, M_{1}:=[a, b], M_{2}:=[b, c]$, and $M_{3}:=[c, a]$

$$
[a, b, c]=[a, b] \uplus[b, c] \uplus[c, a]-[b]-[c]-[a] \uplus \square
$$

Idea: multiplicities built in so no need for taking cardinalities by ||

$$
\begin{aligned}
& U / \bigcap \mapsto \text { multiset union } \cup \text { (maximum) / intersection } \cap \text { (minimum) } \\
& \sum /-\mapsto \text { multiset sum } \uplus \text { (addition) / difference }- \text { (subtraction) }
\end{aligned}
$$

caveat: multisets not cgroup; multiplicities nonnegative; cf. $1=4-6+4 \div 1$??

$1^{\text {st }}$ abstraction: IE for multisets

Example

for $I:=\{1,2,3\}, M_{1}:=[a, b], M_{2}:=[b, c]$, and $M_{3}:=[c, a]$

$$
[a, b, c]=[a, b] \uplus[b, c] \uplus[c, a]-[b]-[c]-[a] \uplus \square
$$

Idea: multiplicities built in so no need for taking cardinalities by ||

$$
\begin{aligned}
& U / \bigcap \mapsto \text { multiset union } \cup \text { (maximum) / intersection } \cap \text { (minimum) } \\
& \sum /-\mapsto \text { multiset sum } \uplus \text { (addition) / difference }- \text { (subtraction) }
\end{aligned}
$$

rearrange to only need cmonoid; $1=4 \doteq 6+4 \doteq 1$ into $1=(4+4) \doteq(6+1)$

$1^{\text {st }}$ abstraction: IE for multisets

IE by rearranging odd (positive) and even (negative) summands in IE

$$
\begin{aligned}
\left|\bigcup A_{l}\right| & =\sum_{\emptyset \subset \jmath \subseteq I}(-1)^{|J|-1} \cdot\left|\bigcap A_{\jmath}\right| \\
& =\operatorname{cgroup}\left(\sum_{\emptyset \subset \jmath \subseteq I}\left|\cap A_{\jmath}\right|\right) \div\left(\sum_{\emptyset \subset \jmath \subseteq I}\left|\cap A_{\jmath}\right|\right) \quad \text { since } 0 \geq \mathrm{E}
\end{aligned}
$$

$1^{\text {st }}$ abstraction: IE for multisets

Theorem (IE for finite family of finite multisets / sets)

$1^{\text {st }}$ abstraction: IE for multisets

Theorem (IE for finite family of finite multisets / sets)

$$
\begin{aligned}
& \bigcup M_{I}=\left(\biguplus_{\emptyset \subset J \subseteq \bar{o} I} \cap M_{J}\right)-\left(\biguplus_{\emptyset \subset J \frac{C}{e}} \cap M_{J}\right)
\end{aligned}
$$

Proof.

for multisets: as before (but without || clutter) by induction on |I| also proving $\mathrm{O} \supseteq \mathrm{E}$, again using the algebraic structure laws (only cmonoid; not cgroup)
$1^{\text {st }}$ abstraction: IE for multisets
Theorem (IE for finite family of finite multisets / sets)

Proof.

for sets: view as multisets, define $|M|:=\sum_{x} M(x)$, use $|M \uplus N|=|M|+|N|$ and $\mathrm{O} \boxplus \mathrm{E}$ and
$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra $\langle A, 1, /\rangle$)

$$
\begin{align*}
a / 1 & =a \tag{1}\\
a / a & =1 \tag{2}\\
1 / a & =1 \tag{3}\\
(a / b) /(c / b) & =(a / c) /(b / c) \tag{4}\\
(a / b) / a & =1 \tag{5}\\
a /(a / b) & =b /(b / a) \tag{6}
\end{align*}
$$

residuation: read a / b as a after b
$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

Skolemisation of diamond: \forall peak $a, b . \exists$ valley b^{\prime}, a^{\prime}
$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

Skolemisation of diamond: \forall peak a, b. valley $b / a, a / b$
$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

laws (1)-(4): residual system (Lévy,Stark,Terese)

$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra $\langle A, 1, /\rangle$)

$$
\begin{align*}
a / 1 & =a \tag{1}\\
(a / b) /(c / b) & =(a / c) /(b / c) \tag{4}\\
(a / b) / a & =1 \tag{5}\\
a /(a / b) & =b /(b / a) \tag{6}
\end{align*}
$$

Lemma (Some CRA laws)

$$
\begin{aligned}
a / a=1 & (a / b) / c & =(a / c) / b \\
1 / a=1 & (a / b) /(b / a) & =a / b
\end{aligned}
$$

commutative BCK algebra with relative cancellation (Dvurečenskij \& Graziano)
$2^{\text {nd }}$ abstraction: IE for commutative residual algebras

Definition (Commutative Residual Algebra $\langle A, 1, /\rangle$)

$$
\begin{align*}
a / 1 & =a \tag{1}\\
(a / b) /(c / b) & =(a / c) /(b / c) \tag{4}\\
(a / b) / a & =1 \tag{5}\\
a /(a / b) & =b /(b / a) \tag{6}
\end{align*}
$$

Example (Some CRAs)

$\left\langle\mathbb{N}, 0, \dot{-},\langle\operatorname{Pos}, 1, \cdot /\rangle,\langle\operatorname{Mst}(A), \nmid,-\rangle,\left\langle\mathbb{R}_{\geq 0}, 0, \dot{-},\left\langle\mathbb{R}_{\geq 1}, 1, \div\right\rangle, \ldots\right.\right.$, all mentioned and more: $\langle\{0,1\}, 0,-\rangle,\langle\operatorname{Set}(A), \emptyset,-\rangle, \ldots$, sub-CRAs by downward-closing

CRA derived operations

Definition (Derived operations $\leqslant, \wedge, \cdot, \vee$ for CRA $\langle A, 1, /\rangle)$

$$
\begin{array}{rlrl}
a \leqslant b & :=a / b=1 \\
a \wedge b & :=a /(a / b) \\
a \cdot b & :=c & \text { if } a / c=1 \text { and } c / a=b \quad \text { (partial) } \\
a \vee b & :=a \cdot(b / a) & \text { (partial) }
\end{array}
$$

CRA derived operations

Example

	CRA	\mathbb{N}	$\mathbb{R}_{\geq 0}$	$\operatorname{Mst}(A)$	$\operatorname{Set}(A)$	Pos
unit	1	0	0	\emptyset	\emptyset	1
residual	$/$	-	-	-	-	\cdot
natural order	\leqslant	\leq	\leq	\subseteq	\subseteq	I
total order?		\checkmark	\checkmark	x	x	x
well-founded?		\checkmark	x	$\checkmark($ fin $)$	$\checkmark($ fin $)$	\checkmark
meet	\wedge	\min	\min	\cap	\cap	gcd
product	\cdot	+	+	\uplus	$\cup($ if $\downarrow)$	\cdot
join	\vee	\max	\max	\cup	\cup	Icm

CRA derived operations

Definition (Derived operations $\leqslant, \wedge, \cdot, \vee$ for CRA $\langle A, 1, /\rangle)$

$$
\begin{aligned}
a \leqslant b & :=a / b=1 \\
a \wedge b & :=a /(a / b) \\
a \cdot b & :=c \quad \text { if } a / c=1 \text { and } c / a=b \\
a \vee b & :=a \cdot(b / a)
\end{aligned}
$$

Lemma (Satisfaction of algebraic IE laws for CRAs)

- $\langle A, \leqslant\rangle$ is a partial order; enables proving $a=b$ by inclusions $a \leqslant b$ and $b \leqslant a$

CRA derived operations

Definition (Derived operations $\leqslant, \wedge, \cdot, \vee$ for CRA $\langle A, 1, /\rangle)$

$$
\begin{aligned}
a \leqslant b & :=a / b=1 \\
a \wedge b & :=a /(a / b) \\
a \cdot b & :=c \quad \text { if } a / c=1 \text { and } c / a=b \\
a \vee b & :=a \cdot(b / a)
\end{aligned}
$$

Lemma (Satisfaction of algebraic IE laws for CRAs)

- $\langle A, \leqslant\rangle$ is a partial order; enables proving $a=b$ by inclusions $a \leqslant b$ and $b \leqslant a$
- $\langle A, \wedge\rangle$ is a meet-semilattice; $a \leqslant b$ iff $a \wedge b=a ; 1 \wedge a=1$

CRA derived operations

Definition (Derived operations $\leqslant, \wedge, \cdot, \vee$ for CRA $\langle A, 1, /\rangle$)

$$
\begin{aligned}
a \leqslant b & :=a / b=1 \\
a \wedge b & :=a /(a / b) \\
a \cdot b & :=c \quad \text { if } a / c=1 \text { and } c / a=b \\
a \vee b & :=a \cdot(b / a)
\end{aligned}
$$

Lemma (Satisfaction of algebraic IE laws for CRAs)

- $\langle A, \leqslant\rangle$ is a partial order; enables proving $a=b$ by inclusions $a \leqslant b$ and $b \leqslant a$
- $\langle A, \wedge\rangle$ is a meet-semilattice; $a \leqslant b$ iff $a \wedge b=a ; 1 \wedge a=1$
- $\langle A, 1, \cdot\rangle$ is a partial commutative monoid; $a \leqslant b$ iff $a \cdot c=b$ for some c;

CRA derived operations

Definition (Derived operations $\leqslant, \wedge, \cdot, \vee$ for CRA $\langle A, 1, /\rangle$)

$$
\begin{aligned}
a \leqslant b & :=a / b=1 \\
a \wedge b & :=a /(a / b) \\
a \cdot b & :=c \quad \text { if } a / c=1 \text { and } c / a=b \\
a \vee b & :=a \cdot(b / a)
\end{aligned}
$$

Lemma (Satisfaction of algebraic IE laws for CRAs)

- $\langle A, \leqslant\rangle$ is a partial order; enables proving $a=b$ by inclusions $a \leqslant b$ and $b \leqslant a$
- $\langle A, \wedge\rangle$ is a meet-semilattice; $a \leqslant b$ iff $a \wedge b=a ; 1 \wedge a=1$
- $\langle A, 1, \cdot\rangle$ is a partial commutative monoid; $a \leqslant b$ iff $a \cdot c=b$ for some c;
- $\langle A, \vee\rangle$ is a partial join-semilattice; $a \leqslant b$ iff $a \vee b=b ; 1 \vee a=a$

CRA derived operations

Definition (Derived operations $\leqslant, \wedge, \cdot, \vee$ for CRA $\langle A, 1, /\rangle$)

$$
\begin{aligned}
a \leqslant b & :=a / b=1 \\
a \wedge b & :=a /(a / b) \\
a \cdot b & :=c \quad \text { if } a / c=1 \text { and } c / a=b \\
a \vee b & :=a \cdot(b / a)
\end{aligned}
$$

Lemma (Satisfaction of algebraic IE laws for CRAs)

- $\langle A, \leqslant\rangle$ is a partial lattice; $a \vee(a \wedge b) \simeq a$ and $a \wedge(a \vee b) \simeq a$ if $(a \vee b) \downarrow$
- $\langle A, \wedge\rangle$ is a meet-semilattice; $a \leqslant b$ iff $a \wedge b=a ; 1 \wedge a=1$
- $\langle A, 1, \cdot\rangle$ is a partial commutative monoid; $a \leqslant b$ iff $a \cdot c=b$ for some c;
- $\langle A, \vee\rangle$ is a partial join-semilattice; $a \leqslant b$ iff $a \vee b=b ; 1 \vee a=a$

CRA derived operations

Definition (Derived operations $\leqslant, \wedge, \cdot, \vee$ for CRA $\langle A, 1, /\rangle)$

$$
\begin{aligned}
a \leqslant b & :=a / b=1 \\
a \wedge b & :=a /(a / b) \\
a \cdot b & :=c \quad \text { if } a / c=1 \text { and } c / a=b \\
a \vee b & :=a \cdot(b / a)
\end{aligned}
$$

Lemma (Satisfaction of algebraic IE laws for CRAs)

- $\langle A, \leqslant\rangle$ is a partial lattice; $a \vee(a \wedge b) \simeq a$ and $a \wedge(a \vee b) \simeq a$ if $(a \vee b) \downarrow$
- $\langle A, \wedge, \vee\rangle$ is a partial distributive lattice; $(a \vee b) \wedge c \simeq(a \wedge c) \vee(b \wedge c)$ if $(a \vee b) \downarrow$
- $\langle A, 1, \cdot\rangle$ is a partial commutative monoid; $a \leqslant b$ iff $a \cdot c=b$ for some c;

IE for CRAs

Theorem (Inclusion / exclusion for finite family a_{l})

$$
O:=\left(\prod_{\emptyset \subset J \subseteq 1} \bigwedge a_{j}\right) \downarrow \text { and } E:=\left(\prod_{\emptyset \subset J \subseteq I} \bigwedge a_{j}\right) \downarrow \Longrightarrow \bigvee a_{l} \simeq O / E \text { and } E \leqslant O
$$

IE for CRAs

Theorem (Inclusion / exclusion for finite family a_{l})

$$
O:=\left(\prod_{\emptyset \emptyset\lrcorner \subseteq I} 1 a_{\mu}\right) \downarrow \text { and } E:=\left(\prod_{\emptyset \subset J \subseteq I}^{e} \bigwedge a_{\jmath}\right) \downarrow \Longrightarrow \bigvee a_{l} \simeq O / E \text { and } E \leqslant O
$$

Proof.

algebraic version of proof by induction on $|I|$ using IE Iaws for CRAs and

$$
\begin{array}{rlrl}
(b / a) \wedge(c / a) & =(c / a) /(c / b) & =(b \wedge c) /(a \wedge c) \\
(a \cdot b) /(c \cdot d) & =(a / c) /(d / b) & & \text { if } c \leqslant a, b \leqslant d \text { and }(a \cdot b) \downarrow,(c \cdot d) \downarrow \\
(a \cdot b) \wedge c & \simeq(a \wedge c) \cdot(b \wedge(c / a)) & & \text { if }(a \cdot b) \downarrow
\end{array}
$$

IE for CRAs

Theorem (Inclusion / exclusion for finite family a_{l})

How general is this?

Versions of IE we know of are instances, e.g. probabilities. Novel (?) instance, measurable multisets, next up.
$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

\mathcal{A} algebra if $\mathcal{A} \subseteq \wp(A)$ with $A \in \mathcal{A}$ and closed under union and complement
$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

\mathcal{A} algebra if $\mathcal{A} \subseteq \wp(A)$ with $A \in \mathcal{A}$ and closed under union and complement
formally, \mathcal{A} sub-algebra of the Boolean algebra $\wp(A)$
simple case of algebra in measure theory where closed under countable union
$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

\mathcal{A} algebra if $\mathcal{A} \subseteq \wp(A)$ with $A \in \mathcal{A}$ and closed under union and complement

Definition (multiset M being \mathcal{A}-measurable)

- $M^{i} \in \mathcal{A}$ for each i, with $M^{i}:=\{a \mid M(a)=i\}$ (set at height i of M)
- $M^{>i}=\emptyset$ for some i, with $M^{>i}:=\bigcup_{j>i} M^{j}=\{a \mid M(a)>i\}$ (least i is height of M)

$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

\mathcal{A} algebra if $\mathcal{A} \subseteq \wp(A)$ with $A \in \mathcal{A}$ and closed under union and complement

Definition (multiset M being \mathcal{A}-measurable)

- $M^{i} \in \mathcal{A}$ for each i, with $M^{i}:=\{a \mid M(a)=i\}$ (set at height i of M)
- $M^{>i}=\emptyset$ for some i, with $M^{>i}:=\bigcup_{j>i} M^{j}=\{a \mid M(a)>i\}$ (least i is height of M)
set measurable iff it is so viewed as multiset

$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

\mathcal{A} algebra if $\mathcal{A} \subseteq \wp(A)$ with $A \in \mathcal{A}$ and closed under union and complement

Definition (multiset M being \mathcal{A}-measurable)

- $M^{i} \in \mathcal{A}$ for each i, with $M^{i}:=\{a \mid M(a)=i\}$ (set at height i of M)
- $M^{>i}=\emptyset$ for some i, with $M^{>i}:=\bigcup_{j>i} M^{j}=\{a \mid M(a)>i\}$ (least i is height of M)

Lemma (CRA)

- sets M^{i} at height i partition A

$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

\mathcal{A} algebra if $\mathcal{A} \subseteq \wp(A)$ with $A \in \mathcal{A}$ and closed under union and complement

Definition (multiset M being \mathcal{A}-measurable)

- $M^{i} \in \mathcal{A}$ for each i, with $M^{i}:=\{a \mid M(a)=i\}$ (set at height i of M)
- $M^{>i}=\emptyset$ for some i, with $M^{>i}:=\bigcup_{j>i} M^{j}=\{a \mid M(a)>i\}$ (least i is height of M)

Lemma (CRA)

- sets M^{i} at height i partition A
- $M^{>0}$ is support of M (need not be finite!); M empty iff height 0

$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

\mathcal{A} algebra if $\mathcal{A} \subseteq \wp(A)$ with $A \in \mathcal{A}$ and closed under union and complement

Definition (multiset M being \mathcal{A}-measurable)

- $M^{i} \in \mathcal{A}$ for each i, with $M^{i}:=\{a \mid M(a)=i\}$ (set at height i of M)
- $M^{>i}=\emptyset$ for some i, with $M^{>i}:=\bigcup_{j>i} M^{j}=\{a \mid M(a)>i\}$ (least i is height of M)

Lemma (CRA)

- sets M^{i} at height i partition A
- $M^{>0}$ is support of M; M empty iff height 0
- $\langle\operatorname{Mst}(\mathcal{A}), \not],-\rangle$ of \mathcal{A}-measurable multisets is CRA (closed under -)

$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

function μ from algebra \mathcal{A} to non-negative reals is measure if

- $\mu(\emptyset)=0$
- $\mu(A \cup B)=\mu(A)+\mu(B)$ for $A, B \in \mathcal{A}$ and disjoint extended to measurable multisets by $\mu(M):=\sum_{i} \mu\left(M^{>i}\right)$

$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

function μ from algebra \mathcal{A} to non-negative reals is measure if

- $\mu(\emptyset)=0$
- $\mu(A \cup B)=\mu(A)+\mu(B)$ for $A, B \in \mathcal{A}$ and disjoint
extended to measurable multisets by $\mu(M):=\sum_{i} \mu\left(M^{>i}\right)$

$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

function μ from algebra \mathcal{A} to non-negative reals is measure if

- $\mu(\emptyset)=0$
- $\mu(A \cup B)=\mu(A)+\mu(B)$ for $A, B \in \mathcal{A}$ and disjoint
extended to measurable multisets by $\mu(M):=\sum_{i} \mu\left(M^{>i}\right)$

$2^{\text {nd }}$ abstraction: IE for measurable multisets

Definition

function μ from algebra \mathcal{A} to non-negative reals is measure if

- $\mu(\emptyset)=0$
- $\mu(A \cup B)=\mu(A)+\mu(B)$ for $A, B \in \mathcal{A}$ and disjoint
extended to measurable multisets by $\mu(M):=\sum_{i} \mu\left(M^{>i}\right)=\sum_{j} j \cdot \mu\left(L^{j}\right)$

$2^{\text {nd }}$ abstraction: IE for measurable multisets
Theorem (IE for finite family of measurable multisets / sets)

$$
\begin{gathered}
\bigcup M_{I}=\left(\biguplus_{\emptyset \subset J \subseteq I} \cap M_{J}\right)-\left(\biguplus_{\emptyset \subset J \subseteq I} \cap M_{J}\right) \\
\mu\left(\bigcup A_{I}\right)=\left(\sum_{\emptyset \subset \jmath \subseteq I} \mu\left(\bigcap A_{J}\right)\right) \div\left(\sum_{\emptyset \subset \jmath \subseteq I} \mu\left(\bigcap A_{J}\right)\right)
\end{gathered}
$$

$2^{\text {nd }}$ abstraction: IE for measurable multisets
Theorem (IE for finite family of measurable multisets / sets)

$$
\begin{aligned}
& \bigcup M_{I}=\left(\biguplus_{\emptyset \subset J \subseteq I} \cap M_{J}\right)-\left(\biguplus_{\emptyset \subset J \subseteq I} \cap M_{J}\right) \\
& \mu\left(\bigcup A_{l}\right)=\left(\sum_{\emptyset \subset \jmath \subseteq I} \mu\left(\bigcap A_{\jmath}\right)\right) \div\left(\sum_{\emptyset \subset \jmath \subseteq l} \mu\left(\bigcap A_{\jmath}\right)\right)
\end{aligned}
$$

Proof.

for measurable multisets: instance of IE for CRAs
$2^{\text {nd }}$ abstraction: IE for measurable multisets
Theorem (IE for finite family of measurable multisets / sets)

$$
\begin{gathered}
\bigcup M_{I}=\left(\biguplus_{\emptyset \subset J \subseteq I} \cap M_{J}\right)-\left(\biguplus_{\emptyset \subset J \subseteq I} \cap M_{J}\right) \\
\mu\left(\bigcup A_{l}\right)=\left(\sum_{\emptyset \subset \jmath \subseteq I} \mu\left(\bigcap A_{J}\right)\right)-\left(\sum_{\emptyset \subset \jmath \subseteq I} \mu\left(\bigcap A_{J}\right)\right)
\end{gathered}
$$

Proof.

for sets: view as multisets, use $\mu(M \uplus N)=\mu(M)+\mu(N)$ and $O \boxplus \mathrm{E}$ and
the IE?

Holler

I like neither the partial nor the binary / because they are so ugly !

the $I E$?

Holler

I want my beautiful total composition / product and unary inverse !!

the IE!

Holler

I want my beautiful total composition / product and unary inverse !!

Sooth

$$
\begin{array}{ccccc}
\text { bits } & : & \text { natural numbers } & : & \text { integers } \\
\langle\mathbb{B}, 0,-\rangle\rangle & : & \langle\mathbb{N}, 0,-,+\rangle & : & \langle\mathbb{Z}, 0,(-),+, \min , \max \rangle \\
\text { CRA } & : & \text { CRAC } & : & \text { commutative lattice-ordered group } \\
\langle A, 1, /\rangle & : & \langle A, 1, /, \cdot\rangle & : & \left\langle A, 1,{ }^{-1}, \cdot, \wedge, \vee\right\rangle
\end{array}
$$

where $\mathbb{B}:=\{0,1\}$ and a CRAC is a CRA with composition.

From CRAs to CRACs

Definition (CRA with composition $\langle A, 1, /, \cdot\rangle)$

$$
\begin{align*}
a / 1 & =a \tag{1}\\
(a / b) /(c / b) & =(a / c) /(b / c) \tag{4}\\
(a / b) / a & =1 \tag{5}\\
a /(a / b) & =b /(b / a) \tag{6}\\
c /(a \cdot b) & =(c / a) / b \tag{7}\\
(a \cdot b) / c & =(a / c) \cdot(b /(c / a)) \tag{8}\\
1 \cdot 1 & =1 \tag{9}
\end{align*}
$$

From CRAs to CRACs

From CRAs to CRACs

From CRAs to CRACs

Definition (CRA with composition $\langle\mathrm{A}, 1, /, \cdot\rangle)$

$$
\begin{align*}
a / 1 & =a \tag{1}\\
(a / b) /(c / b) & =(a / c) /(b / c) \tag{4}\\
(a / b) / a & =1 \tag{5}\\
a /(a / b) & =b /(b / a) \tag{6}\\
c /(a \cdot b) & =(c / a) / b \tag{7}\\
(a \cdot b) / c & =(a / c) \cdot(b /(c / a)) \tag{8}\\
1 \cdot 1 & =1 \tag{9}
\end{align*}
$$

Composition in CRA vs. CRAC

in CRAs with derived composition partial versions of (7)-(8) hold:
$c /(a \cdot b)=(c / a) / b$ and $(a \cdot b) / c \simeq(a / c) \cdot(b /(c / a))$ if $(a \cdot b) \downarrow$, and $1 \cdot 1=1$

From CRAs to CRACs

Definition (CRA with composition $\langle\mathrm{A}, 1, /, \cdot\rangle)$

$$
\begin{align*}
a / 1 & =a \tag{1}\\
(a / b) /(c / b) & =(a / c) /(b / c) \tag{4}\\
(a / b) / a & =1 \tag{5}\\
a /(a / b) & =b /(b / a) \tag{6}\\
c /(a \cdot b) & =(c / a) / b \tag{7}\\
(a \cdot b) / c & =(a / c) \cdot(b /(c / a)) \tag{8}\\
1 \cdot 1 & =1 \tag{9}
\end{align*}
$$

Composition in CRAC vs. CRA

composition - in CRACs satisfies the laws of derived composition in CRAs:
$a /(a \cdot b)=(a / a) / b=1$ and $(a \cdot b) / a=1 \cdot b=(1 \cdot b) /((1 \cdot b) / b)=b$.

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Idea (commutative case of residual system construction)
adjoin compositions of objects freely, modulo AC, respecting residuation

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{ }, \Pi, \uplus\rangle$

Idea (commutative case of residual system construction)
carrier of \mathcal{C}^{+}: multisets of objects modulo projection equivalence

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \Pi, \Pi, \uplus\rangle$

Residuation in \mathcal{C}^{+}by tiling with diamonds of \mathcal{C} (Lévy, Stark, Terese)

abbreviate $\left[a_{l}\right]$ to $\left[a_{i} \mid i \in I\right]$. let $I:=\{0, \ldots, n \dot{-}\}$ and $J:=\{0, \ldots, m \dot{ } 1\}$.

- residual $\left[a_{l}\right] /\left[b_{J}\right]$ of $\left[a_{l}\right]$ (left) after [al] (bottom) is [all] (right) by tiling

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Residuation in \mathcal{C}^{+}by tiling with diamonds of \mathcal{C}

abbreviate $\left[a_{l}\right]$ to $\left[a_{i} \mid i \in I\right]$. let $I:=\{0, \ldots, n \dot{-}\}$ and $J:=\{0, \ldots, m \dot{ } 1\}$.

- residual $\left[a_{l}\right] / /\left[b_{J}\right]$ of $\left[a_{l}\right]$ after $\left[a_{l}\right]$ is $\left[a_{l}^{\prime}\right]$ by tiling
- projection equivalence $\left[a_{l}\right] \equiv\left[b_{\jmath}\right]$ if $\left.\left[a_{l}^{\prime}\right]=\emptyset\right]=\left[b_{\jmath}^{\prime}\right]\left(\left[a_{l}\right] \sqsubseteq\left[b_{\jmath}\right]\right.$ and $\left.\left[b_{J}\right] \sqsubseteq\left[a_{l}\right]\right)$

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Definition (of components of \mathcal{C}^{+})

- carrier: finite multisets over A modulo projection equivalence \equiv (projection may be computed by rules (7)-(8) eliding units 1 of \mathcal{C})

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Definition (of components of \mathcal{C}^{+})

- carrier: finite multisets over A modulo projection equivalence \equiv
- unit: empty multiset Ø

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \Pi, \Pi, \uplus\rangle$

Definition (of components of \mathcal{C}^{+})

- carrier: finite multisets over A modulo projection equivalence \equiv
- unit: empty multiset \square
- residuation //: by tiling with diamonds of \mathcal{C}

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Definition (of components of \mathcal{C}^{+})

- carrier: finite multisets over A modulo projection equivalence \equiv
- unit: empty multiset \square
- residuation //: by tiling with diamonds of \mathcal{C}
- composition: multiset sum \uplus

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \rrbracket, \Pi, \uplus\rangle$

Definition (of components of \mathcal{C}^{+})

- carrier: finite multisets over A modulo projection equivalence \equiv
- unit: empty multiset \square
- residuation //: by tiling with diamonds of \mathcal{C}
- composition: multiset sum \uplus
- embedding of \mathcal{C} into \mathcal{C}^{+}: $a \mapsto[a]$
$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC}^{+}=\langle\operatorname{Mst}(A) / \equiv, \llbracket, \Pi, \uplus\rangle$

Example

CRA $\mathcal{C}:=\langle\{0, \ldots, 9\}, 0,-\rangle$ of digits;

- has some compositions, e.g. $7=3+4$ (since $3 \div 7=0$ and $7 \div 3=4$) but most not, e.g. each of $7+6,9+4,4+4+4$ not defined in \mathcal{C}
$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC}^{+}=\langle\operatorname{Mst}(A) / \equiv, \llbracket, \Pi, \uplus\rangle$

Example

CRA $\mathcal{C}:=\langle\{0, \ldots, 9\}, 0,-\rangle$ of digits;

- has some compositions, e.g. $7=3+4$ (since $3 \div 7=0$ and $7 \div 3=4$) but most not, e.g. each of $7+6,9+4,4+4+4$ not defined in \mathcal{C}
- $[7,6]$ and $[9,4]$ represent first two in \mathcal{C}^{+}; should be projection equivalent ...
$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\Pi}, \Pi, \uplus\rangle$

Example

CRA $\mathcal{C}:=\langle\{0, \ldots, 9\}, 0,-\rangle$ of digits;

- has some compositions, e.g. $7=3+4$ (since $3 \div 7=0$ and $7 \div 3=4$) but most not, e.g. each of $7+6,9+4,4+4+4$ not defined in \mathcal{C}
- $[7,6]$ and $[9,4]$ represent first two in \mathcal{C}^{+}; should be projection equivalent ...
- $[7,6] /[9,4] \stackrel{(7)}{=}([7,6] \Delta[9]) /[4] \stackrel{(8)}{=}[7 \div 9,6 \div(9 \div 7)] /[4]=[0,4] \Delta[4]=\varnothing$ $[9,4] /[7,6] \stackrel{(7)}{=}([9,4] /[7]) /[6] \stackrel{(8)}{=}[9 \div 7,4 \dot{-}(7 \div 9)] /[6]=[2,4] /[6]=\varnothing$
$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\Pi}, \Pi, \uplus\rangle$

Example

CRA $\mathcal{C}:=\langle\{0, \ldots, 9\}, 0,-\rangle$ of digits;

- has some compositions, e.g. $7=3+4$ (since $3 \div 7=0$ and $7 \div 3=4$) but most not, e.g. each of $7+6,9+4,4+4+4$ not defined in \mathcal{C}
- $[7,6]$ and $[9,4]$ represent first two in \mathcal{C}^{+}; should be projection equivalent ...
- $[7,6] /[9,4] \stackrel{(7)}{=}([7,6] \Delta[9]) /[4] \stackrel{(8)}{=}[7 \div 9,6 \div(9 \div 7)] /[4]=[0,4] \Delta[4]=\varnothing$ $[9,4] /[7,6] \stackrel{(7)}{=}([9,4] \|[7]) /[6] \stackrel{(8)}{=}[9 \div 7,4 \dot{-}(7 \div 9)] /[6]=[2,4] /[6]=\varnothing$
- \mathcal{C}^{+}isomorphic to $\langle\mathbb{N}, 0, \dot{-},+\rangle$

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\boxed{C}}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds $([a] \equiv[b] \Longrightarrow a=b,[1] \equiv \emptyset,[a] /[b] \equiv[a / b])$ downward-closedly (dc) $(M \|[b] \equiv \emptyset \Longrightarrow \exists a . M \equiv[a])$ in \mathcal{C}^{+}

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{,}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Proof.

for all $a, b, b=(a \wedge b) \cdot(b / a)$

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\boxed{C}}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Proof.

in particular, $b_{i j}=\left(a_{i j} \wedge b_{i j}\right) \cdot b_{i+1 j}$

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Proof.

hence $b_{j}=\left(\prod c_{l j}\right) \cdot b_{j}^{\prime}$ for column j

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Proof.

- embedding being trivial ($a=b$ iff $a / b=1$ and $b / a=1$), to show downward-closedness assume $M \|[b] \equiv \emptyset$ for $M=\left[a_{l}\right]$

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Proof.

- embedding being trivial ($a=b$ iff $a / b=1$ and $b / a=1$), to show downward-closedness assume $M \|[b] \equiv \emptyset$ for $M=\left[a_{l}\right]$
- setting $b=b_{0}$ the before gives $b_{0}=\left(\prod c_{10}\right) \cdot b_{0}^{\prime}$ and $a_{i}=c_{i 0}$ for each $i \in I$

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\Pi}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Proof.

- embedding being trivial ($a=b$ iff $a / b=1$ and $b / a=1$), to show downward-closedness assume $M \|[b] \equiv \emptyset$ for $M=\left[a_{l}\right]$
- setting $b=b_{0}$ the before gives $b_{0}=\left(\prod c_{10}\right) \cdot b_{0}^{\prime}$ and $a_{i}=c_{i 0}$ for each $i \in I$
- hence $b_{0}=\left(\prod a_{l}\right) \cdot b_{0}^{\prime}$, showing that $\left(\prod a_{l}\right) \downarrow$ from which $M \equiv\left[\prod a_{l}\right]$

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\Pi}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Proof.

- embedding being trivial ($a=b$ iff $a / b=1$ and $b / a=1$), to show downward-closedness assume $M \|[b] \equiv \emptyset$ for $M=\left[a_{l}\right]$
- setting $b=b_{0}$ the before gives $b_{0}=\left(\prod c_{10}\right) \cdot b_{0}^{\prime}$ and $a_{i}=c_{i 0}$ for each $i \in I$
- hence $b_{0}=\left(\prod a_{l}\right) \cdot b_{0}^{\prime}$, showing that $\left(\prod a_{l}\right) \downarrow$ from which $M \equiv\left[\prod a_{1}\right]$ that \equiv is a congruence follows by cubing with (4).

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Corollary

for CRA-expressions t, s, universal statement $\forall \vec{a} . t=s$ valid in CRAs iff in CRACs by downward-closedness also bounded \exists s could be allowed

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \boxed{\square}, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Corollary

any partial monoid homomorphism f from \mathcal{C} into a monoid $\mathcal{M}:=\langle B, \mathbb{1}, \circ\rangle$ factors via embedding and a unique monoid homomorpism h from \mathcal{C}^{+}to \mathcal{M}

$\mathcal{C}=\langle A, 1, /\rangle$ embeds in $\operatorname{CRAC} \mathcal{C}^{+}=\langle\operatorname{Mst}(A) / \equiv, \Pi, \Pi, \uplus\rangle$

Theorem (Dvurečenskij)

\mathcal{C} embeds downward-closedly in \mathcal{C}^{+}

Corollary

any partial monoid homomorphism f from \mathcal{C} into a monoid $\mathcal{M}:=\langle B, \mathbb{1}, \circ\rangle$ factors via embedding and a unique monoid homomorpism h from \mathcal{C}^{+}to \mathcal{M}

Proof.

let f be such that if $c=a \cdot b$ then $f(c)=a \circ b$. by monoid homomorphism only choice $h:\left[a_{0}, \ldots, a_{n-1}\right] \mapsto f\left(a_{0}\right) \circ \ldots \circ f\left(a_{n}\right)$. that h is a function independent of representative, follows from that if $\left[a_{l}\right] \equiv\left[b_{J}\right]$. then $\left[a_{l}\right] \equiv\left[c_{l}\right] \equiv\left[b_{J}\right]$ for some matrix $c_{I J}$ (above Riesz decomposition). conclude by rearranging and assumption from $f\left(a_{0}\right) \circ \ldots \circ f\left(a_{n-1}\right)=f\left(c_{00}\right) \circ \ldots \circ f\left(c_{(n-1)(m-1)}\right)=f\left(b_{0}\right) \circ \ldots \circ f\left(b_{m-1}\right)$.

From CRACs to commutative ℓ-groups

Definition (Commutative (abelian) lattice-ordered group)
A commutative ℓ-group is structure $\mathcal{G}:=\left\langle A, 1,{ }^{-1}, \cdot, \wedge, \vee\right\rangle$ with $\langle A, \wedge, \vee\rangle$ a lattice, $\left\langle A, 1,,^{-1}, \cdot\right\rangle$ a commutative group, where \cdot preserves order $a \leqslant b \Longrightarrow a \cdot c \leqslant b \cdot c$

From CRACs to commutative ℓ-groups

Definition (Commutative ℓ-group)

A commutative ℓ-group is structure $\mathcal{G}:=\left\langle A, 1,{ }^{-1}, \cdot, \wedge, \vee\right\rangle$ with $\langle A, \wedge, \vee\rangle$ a lattice, $\left\langle A, 1,,^{-1}, \cdot\right\rangle$ a commutative group, where \cdot preserves order $a \leqslant b \Longrightarrow a \cdot c \leqslant b \cdot c$

From CRACs to commutative ℓ-groups

Definition (Commutative ℓ-group)

A commutative ℓ-group is structure $\mathcal{G}:=\left\langle A, 1,{ }^{-1}, \cdot, \wedge, \vee\right\rangle$ with $\langle A, \wedge, \vee\rangle$ a lattice, $\left\langle A, 1,,^{-1}, \cdot\right\rangle$ a commutative group, where \cdot preserves order $a \leqslant b \Longrightarrow a \cdot c \leqslant b \cdot c$

Remark

for any such \mathcal{G}, lattice $\langle A, \wedge, \vee\rangle$ is distributive

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)

adjoin inverses of objects freely, modulo AC, respecting cancellation

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

freely compose a, b^{-1} (inverse of b), c, a^{-1} (inverse of a)

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

freely compose a, b^{-1}, c, a^{-1} (conversion)

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

compose a, b^{-1}, c, a^{-1} modulo AC

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

sort into positive-negative (forward-backward) order a, c, b^{-1}, a^{-1}

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

sort into valley $\frac{a \cdot c}{a \cdot b}$; how to respect cancellation?; reordering of a, a^{-1} needed?

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

quotient out \equiv as for fractions: $\frac{6}{10} \equiv \frac{21}{35}$ because $6 \cdot 35=21 \cdot 10$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

$\frac{a}{b} \equiv \frac{c}{d}$ if $a \cdot d \cdot e=c \cdot b \cdot e$ for some $e \Longrightarrow$ commutative group (Grothendieck)

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

in the present example: $\frac{a \cdot c}{a \cdot b} \equiv \frac{c}{b}$ because $a \cdot c \cdot b=c \cdot a \cdot b$

RATTH

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Idea (construction of commutative group out of commutative monoid)
adjoin inverses of objects freely, modulo AC, respecting cancellation

Example

CRACs simpler: have cancellation; cancel $a \wedge b$ from $\frac{a}{b}$, so $\frac{a}{b}$ normalises to $\frac{a / b}{b / a}$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition (of components of $\widehat{\mathcal{C}}$)

- carrier: (formal) fractions $\frac{a}{b}$ with $a, b \in A$ that are normalised: $a \wedge b=1$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition (of components of $\widehat{\mathcal{C}}$)

- carrier: (formal) fractions $\frac{a}{b}$ with $a, b \in A$ that are normalised: $a \wedge b=1$
- unit: $\frac{1}{1}$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition (of components of $\widehat{\mathcal{C}}$)

- carrier: (formal) fractions $\frac{a}{b}$ with $a, b \in A$ that are normalised: $a \wedge b=1$
- unit: $\frac{1}{1}$
- inverse: $\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition (of components of $\widehat{\mathcal{C}}$)

- carrier: (formal) fractions $\frac{a}{b}$ with $a, b \in A$ that are normalised: $a \wedge b=1$
- unit: $\frac{1}{1}$
- inverse: $\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}$
- composition: $\frac{a}{b} \cdot \frac{c}{d}:=\frac{(a / d) \cdot(c / b)}{(d / a) \cdot(b / c)}$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition (of components of $\widehat{\mathcal{C}}$)

- carrier: (formal) fractions $\frac{a}{b}$ with $a, b \in A$ that are normalised: $a \wedge b=1$
- unit: $\frac{1}{1}$
- inverse: $\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}$
- composition: $\frac{a}{b} \cdot \frac{c}{d}:=\frac{(a / d) \cdot(c / b)}{(d / a) \cdot(b / c)}$
- meet: $\frac{a}{b} \wedge \frac{c}{d}:=\frac{a \wedge c}{b \vee d}$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition (of components of $\widehat{\mathcal{C}}$)

- carrier: (formal) fractions $\frac{a}{b}$ with $a, b \in A$ that are normalised: $a \wedge b=1$
- unit: $\frac{1}{1}$
- inverse: $\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}$
- composition: $\frac{a}{b} \cdot \frac{c}{d}:=\frac{(a / d) \cdot(c / b)}{(d / a) \cdot(b / c)}$
- meet: $\frac{a}{b} \wedge \frac{c}{d}:=\frac{a \wedge c}{b \vee d}$
- join: $\frac{a}{b} \vee \frac{c}{d}:=\frac{a \vee c}{b \wedge d}$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition (of components of $\widehat{\mathcal{C}}$)

- carrier: (formal) fractions $\frac{a}{b}$ with $a, b \in A$ that are normalised: $a \wedge b=1$
- unit: $\frac{1}{1}$
- inverse: $\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}$
- composition: $\frac{a}{b} \cdot \frac{c}{d}:=\frac{(a / d) \cdot(c / b)}{(d / a) \cdot(b / c)}$
- meet: $\frac{a}{b} \wedge \frac{c}{d}:=\frac{a \wedge c}{b \vee d}$
- join: $\frac{a}{b} \vee \frac{c}{d}:=\frac{a \vee c}{b \wedge d}$
- embedding ${ }^{\wedge}$ of \mathcal{C} in $\widehat{\mathcal{C}}: a \mapsto \frac{a}{1}$ $a / b \mapsto\left(\widehat{a} \cdot(\widehat{b})^{-1}\right) \vee 1$, other operations to 'themselves'
$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition

$\widehat{\mathcal{C}}:=\left\langle\left\{\left.\frac{a}{b} \right\rvert\, a \wedge b=1\right\}, \frac{1}{1},\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}, \frac{a}{b} \cdot \frac{c}{d}:=\frac{(a / d) \cdot(c / b)}{(d / a) \cdot(b / c)}, \frac{a}{b} \wedge \frac{c}{d}:=\frac{a \wedge c}{b \vee d}, \frac{a}{b} \vee \frac{c}{d}:=\frac{a \vee c}{b \wedge d}\right\rangle$

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition

$\widehat{\mathcal{C}}:=\left\langle\left\{\left.\frac{a}{b} \right\rvert\, a \wedge b=1\right\}, \frac{1}{1},\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}, \frac{a}{b} \cdot \frac{c}{d}:=\frac{(a / d) \cdot(c / b)}{(d / a) \cdot(b / c)}, \frac{a}{b} \wedge \frac{c}{d}:=\frac{a \wedge c}{b \vee d}, \frac{a}{b} \vee \frac{c}{d}:=\frac{a \vee c}{b \wedge d}\right\rangle$

Example

$\langle\mathbb{N}, 1, \cdot /, \cdot\rangle$ gives (normalised) fractions $\frac{n}{m} ; \frac{6}{5} \cdot \frac{5}{2}=\frac{3}{1}, \frac{6}{5} \wedge \frac{5}{2}=\frac{1}{10}$, and $\frac{6}{5} \vee \frac{5}{2}=\frac{30}{1}$.

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition

$$
\widehat{\mathcal{C}}:=\left\langle\left\{\left.\frac{a}{b} \right\rvert\, a \wedge b=1\right\}, \frac{1}{1},\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}, \frac{a}{b} \cdot \frac{c}{d}:=\frac{(a / d) \cdot(c / b)}{(d / a) \cdot(b / c)}, \frac{a}{b} \wedge \frac{c}{d}:=\frac{a \wedge c}{b \vee d}, \frac{a}{b} \vee \frac{c}{d}:=\frac{a \vee c}{b \wedge d}\right\rangle
$$

Theorem (Dvurečenskij)

\mathcal{C} embeds in positive cone $\widehat{\mathcal{C}}_{\geq 1}$ (elements \geq unit) of commutative ℓ-group $\widehat{\mathcal{C}}$
Easy using ATP e.g. Prover9

$\operatorname{CRAC} \mathcal{C}=\langle A, 1, /, \cdot\rangle$ embeds in commutative ℓ-group $\widehat{\mathcal{C}}$

Definition

$$
\widehat{\mathcal{C}}:=\left\langle\left\{\left.\frac{a}{b} \right\rvert\, a \wedge b=1\right\}, \frac{1}{1},\left(\frac{a}{b}\right)^{-1}:=\frac{b}{a}, \frac{a}{b} \cdot \frac{c}{d}:=\frac{(a / d) \cdot(c / b)}{(d / a) \cdot(b / c)}, \frac{a}{b} \wedge \frac{c}{d}:=\frac{a \wedge c}{b \vee d}, \frac{a}{b} \vee \frac{c}{d}:=\frac{a \vee c}{b \wedge d}\right\rangle
$$

Theorem (Dvurečenskij)

\mathcal{C} embeds in positive cone $\widehat{\mathcal{C}}_{\geq 1}$ of commutative ℓ-group $\widehat{\mathcal{C}}$

Corollary

for CRA-expressions t, s, universal statement $\forall \vec{a} . t=s$ is valid in CRACs iff
$\forall \vec{a} \in \mathcal{G}_{\geq 1} . \widehat{t}=\widehat{s}$ is in commutative ℓ-groups \mathcal{G}, for ${ }^{\wedge}$ such that $\widehat{r / u}:=\left(\widehat{r} \cdot(\widehat{u})^{-1}\right) \vee 1$
latter decidable (co-NP; Khisamiev, Weispfenning), so former decidable for CRAs

IE for commutative ℓ-groups $\mathcal{G}:=\left\langle A, 1,{ }^{-1}, \cdot,, \wedge, \vee\right\rangle$

Example

- $\max (6,15,10)=\min (6,15,10)+6+15+10-\min (6,15) \div \min (15,10) \div \min (10,6)$

IE for commutative ℓ-groups $\mathcal{G}:=\left\langle A, 1,{ }^{-1}, \cdot,, \wedge, \vee\right\rangle$

Example

- $\max (6,15,10)=\min (6,15,10)+6+15+10-\min (6,15)-\min (15,10)-\min (10,6)$
- $\max (-3,6,1)=\min (-3,6,1)+-3+6+1-\min (-3,6)-\min (6,1)-\min (1,-3)$

IE for commutative ℓ-groups $\mathcal{G}:=\left\langle A, 1,{ }^{-1}, \cdot,, \wedge, \vee\right\rangle$

Example

- $\max (6,15,10)=\min (6,15,10)+6+15+10-\min (6,15)-\min (15,10)-\min (10,6)$
- $\max (-3,6,1)=\min (-3,6,1)+-3+6+1-\min (-3,6)-\min (6,1)-\min (1,-3)$

Theorem (IE for commutative ℓ-ordered groups)

$$
\bigvee a_{l}=\prod_{\emptyset \subset J \subseteq l}\left(\bigwedge a_{\jmath}\right)^{(-1)^{U \mid-1}}
$$

IE for commutative ℓ-groups $\mathcal{G}:=\left\langle A, 1,{ }^{-1}, \cdot, \wedge, \vee\right\rangle$

Example

- $\max (6,15,10)=\min (6,15,10)+6+15+10 \div \min (6,15) \div \min (15,10) \div \min (10,6)$
- $\max (-3,6,1)=\min (-3,6,1)+-3+6+1-\min (-3,6)-\min (6,1)-\min (1,-3)$

Theorem (IE for commutative ℓ-ordered groups)

$$
\bigvee a_{l}=\prod_{\emptyset \subset J \subseteq I}\left(\bigwedge a_{\jmath}\right)^{(-1)^{\text {Ul-1}}}
$$

Proof.

as before by induction on $||\mid$ now using commutative ℓ-group laws

IE for commutative ℓ-groups $\mathcal{G}:=\left\langle A, 1,{ }^{-1}, \cdot, \wedge, \vee\right\rangle$

Example

- $\max (6,15,10)=\min (6,15,10)+6+15+10-\min (6,15)-\min (15,10)-\min (10,6)$
- $\max (-3,6,1)=\min (-3,6,1)+-3+6+1-\min (-3,6)-\min (6,1)-\min (1,-3)$

Remark

alternatively in case all elements in a_{l} are in positive cone $\mathcal{G}_{\geq 1}$:
rearrange rhs using • associ/commutative, ${ }^{-1}$ anti-automorphic as:
and conclude by assumption from IE for CRAs (then also gives $\mathrm{O} \geq \mathrm{E}$)

Conclusions and questions / projects

commutative case

bits	$:$	natural numbers	$:$	integers
$\langle\mathbb{B}, 0,-\rangle$	$:$	$\langle\mathbb{N}, 0,--+\rangle$	$:$	$\langle\mathbb{Z}, 0,(-),+$, min, max \rangle
CRA	$:$	CRAC	$:$	commutative ℓ-group
$\langle A, 1, /\rangle$	$:$	$\langle A, 1, /, \cdot\rangle$	$:$	$\left\langle A, 1,,^{-1}, \cdot, \wedge, \vee\right\rangle$

Conclusions and questions / projects

non-commutative case?

rewrite system (Newman) :	category	$:$	groupoid	
multistep / development	$:$	rewrite sequence	$:$	valley (Church \& Rosser)
simple braids	$:$	positive braids	$:$	braids
$?$	$:$	$?$	$:$	Garside theory (Dehornoy)
residual system	$:$ RS with composition	? (see appendix)		
parallel	$:$	sequential	$:$	invert

residual system / residual system with composition \triangleq concurrent transition / computation system (Stark)

Further questions / projects

- decide equational theory of CRAs / CRACs / commutative ℓ-groups by TRS?

Further questions / projects

- decide equational theory of CRAs / CRACs / commutative ℓ-groups by TRS?
- CRAs complete for universal statements (in signature) on \mathbb{N} ?

Further questions / projects

- decide equational theory of CRAs / CRACs / commutative ℓ-groups by TRS?
- CRAs complete for universal statements (in signature) on \mathbb{N} ?
- integrate CRA / CRAC / commutative ℓ-group ATP in proof assistants Isabelle / Coq theories of multisets distinct (finite / infinite support; CRAs!)

Further questions / projects

- decide equational theory of CRAs / CRACs / commutative ℓ-groups by TRS?
- CRAs complete for universal statements (in signature) on \mathbb{N} ?
- integrate CRA / CRAC / commutative ℓ-group ATP in proof assistants Isabelle / Coq theories of multisets distinct (finite / infinite support; CRAs!)
- conversions are obtained by closing symmetrically then transitively the same for CRA \mathcal{C} : first $\widehat{\mathcal{C}}$ (not a partial group; what?) then $(\widehat{\mathcal{C}})^{+}$?

Some opinions

(1) multisets (AC) precede sets (ACl)

Some opinions

(1) multisets (AC) precede sets (ACl)

2 signed and / or measurable multisets interesting (see appendix)

Some opinions

(1) multisets (AC) precede sets (ACl)

2 signed and / or measurable multisets interesting (see appendix)
(3) parallel analysis (residuation) precedes sequential analysis (composition)

Some opinions

(1) multisets (AC) precede sets (ACI)

2 signed and / or measurable multisets interesting (see appendix)
(3) parallel analysis (residuation) precedes sequential analysis (composition)
(4) rewrite systems precede categories (quivers, pre-categories ahistorical)

Some opinions

(1) multisets (AC) precede sets (ACI)

2 signed and / or measurable multisets interesting (see appendix)
(3) parallel analysis (residuation) precedes sequential analysis (composition)
(4) rewrite systems precede categories
(5) commutative ℓ-groups are subdirect products of linear groups are multisets (with Visser); use as Leitmotiv for multiset results

Some opinions

(1) multisets (AC) precede sets (ACI)

2 signed and / or measurable multisets interesting (see appendix)
(3) parallel analysis (residuation) precedes sequential analysis (composition)
(4) rewrite systems precede categories
(5) commutative ℓ-groups are subdirect products of linear groups are multisets (with Visser); use as Leitmotiv for multiset results
(6 not just (∞-)categories / groupoids, but rewrite systems (sub-equational) e.g., termination no reflexivity, conversion no cancellation (dagger)

Some opinions

(1) multisets (AC) precede sets (ACI)

2 signed and / or measurable multisets interesting (see appendix)
(3) parallel analysis (residuation) precedes sequential analysis (composition)
(4) rewrite systems precede categories
(5) commutative ℓ-groups are subdirect products of linear groups are multisets (with Visser); use as Leitmotiv for multiset results
(6 not just (∞-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)
(7) CRAs give partial commutative monoids, but allow equational reasoning

Some opinions

(1) multisets (AC) precede sets (ACI)

2 signed and / or measurable multisets interesting (see appendix)
(3) parallel analysis (residuation) precedes sequential analysis (composition)
(4) rewrite systems precede categories

5 commutative ℓ-groups are subdirect products of linear groups are multisets (with Visser); use as Leitmotiv for multiset results
(6 not just (∞-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)
(7) CRAs give partial commutative monoids, but allow equational reasoning

8 diagrams as formal pictures; diagram = cyclic conversion $a \cdot b \cdot a^{-1} \cdot b^{-1}$ commutator measures non-commutativity of peak (a, b) $(a / b) \cdot(b / a)$ measures metric distance of peak (a, b) in CRACs $\phi+\psi-\omega-\chi$ measures balance of peak (ϕ, χ) with valley (ψ, ω) (Newman) valley $(\psi / \phi, \phi / \psi)$ witnesses orthogonality / lub / Icm / pushout of peak (ϕ, ψ)

Some opinions

(1) multisets (AC) precede sets (ACI)

2 signed and / or measurable multisets interesting (see appendix)
(3) parallel analysis (residuation) precedes sequential analysis (composition)
(4) rewrite systems precede categories
(5) commutative ℓ-groups are subdirect products of linear groups are multisets (with Visser); use as Leitmotiv for multiset results
© not just (∞-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)
(7) CRAs give partial commutative monoids, but allow equational reasoning

8 diagrams as formal pictures; diagram = cyclic conversion
(9) Term Rewriting Systems, Terese, CUP 2003, should be made available online

Some opinions

(1) multisets (AC) precede sets (ACl)

2 signed and / or measurable multisets interesting (see appendix)
(3) parallel analysis (residuation) precedes sequential analysis (composition)
(4) rewrite systems precede categories
(5) commutative ℓ-groups are subdirect products of linear groups are multisets (with Visser); use as Leitmotiv for multiset results
(6 not just (∞-)categories / groupoids, but rewrite systems
e.g., termination no reflexivity, conversion no cancellation (dagger)
(7) CRAs give partial commutative monoids, but allow equational reasoning

8 diagrams as formal pictures; diagram = cyclic conversion
(9) Term Rewriting Systems, Terese, CUP 2003, should be made available online

10 the rewriting world will miss the contributions by Hans

CRA problems in disguise: EWD 1313

EWD 13:3-0

The GCD and the minimum

Edsger W. Dijkstra Archive, EWD 1313, Austin, 27 November 2001

Calculational proof of EWD1313 in CRAs

Lemma

$a \wedge b=1 \Longrightarrow a \wedge d=a \wedge c$ if $d:=b \cdot c$ is defined, i.e. $d / b=c$ and $b / d=1$

Calculational proof of EWD1313 in CRAs

Lemma

$a \wedge b=1 \Longrightarrow a \wedge d=a \wedge c$ if $d:=b \cdot c$ is defined, i.e. $d / b=c$ and $b / d=1$

Proof.

$$
\begin{array}{ccl}
a \wedge d & \stackrel{\text { meet }}{=} & a /(a / d) \\
& \stackrel{(1)}{=} & a /((a / d) / 1) \\
& \stackrel{\text { hyp }}{=} & a /((a / d) /(b / d)) \\
& \stackrel{(4)}{=} & a /((a / b) /(d / b)) \\
& \stackrel{\text { hyp }}{=} & a /(a /(d / b)) \\
& \stackrel{\text { hyp,meet }}{=} & a \wedge c \quad \square
\end{array}
$$

Calculational proof of EWD1313 in CRAs

Lemma

$a \wedge b=1 \Longrightarrow a \wedge d=a \wedge c$ if $d:=b \cdot c$ is defined, i.e. $d / b=c$ and $b / d=1$

Corollary

- for positive numbers, $\operatorname{gcd}(n, m)=1 \Longrightarrow \operatorname{gcd}(n, m \cdot k)=\operatorname{gcd}(n, k)$

Calculational proof of EWD1313 in CRAs

Lemma

$a \wedge b=1 \Longrightarrow a \wedge d=a \wedge c$ if $d:=b \cdot c$ is defined, i.e. $d / b=c$ and $b / d=1$

Corollary

- for positive numbers, $\operatorname{gcd}(n, m)=1 \Longrightarrow \operatorname{gcd}(n, m \cdot k)=\operatorname{gcd}(n, k)$
- for natural numbers, $\min (n, m)=0 \Longrightarrow \min (n, m+k)=\min (n, k)$

Calculational proof of EWD1313 in CRAs

Lemma

$a \wedge b=1 \Longrightarrow a \wedge d=a \wedge c$ if $d:=b \cdot c$ is defined, i.e. $d / b=c$ and $b / d=1$

Corollary

- for positive numbers, $\operatorname{gcd}(n, m)=1 \Longrightarrow \operatorname{gcd}(n, m \cdot k)=\operatorname{gcd}(n, k)$
- for natural numbers, $\min (n, m)=0 \Longrightarrow \min (n, m+k)=\min (n, k)$
- for multisets, $M \cap N=\emptyset \Longrightarrow M \cap(N \uplus L)=M \cap L$

Calculational proof of EWD1313 in CRAs

Lemma

$a \wedge b=1 \Longrightarrow a \wedge d=a \wedge c$ if $d:=b \cdot c$ is defined, i.e. $d / b=c$ and $b / d=1$

Corollary

- for positive numbers, $\operatorname{gcd}(n, m)=1 \Longrightarrow \operatorname{gcd}(n, m \cdot k)=\operatorname{gcd}(n, k)$
- for natural numbers, $\min (n, m)=0 \Longrightarrow \min (n, m+k)=\min (n, k)$
- for multisets, $M \cap N=\emptyset \Longrightarrow M \cap(N \uplus L)=M \cap L$
- ...

Calculational proof of EWD1313 in CRAs

Lemma

$a \wedge b=1 \Longrightarrow a \wedge d=a \wedge c$ if $d:=b \cdot c$ is defined, i.e. $d / b=c$ and $b / d=1$

Example

similar example features in Mechanical Mathematicians (Bentkamp \&al.)

$$
\begin{gathered}
\left(\operatorname{gcd}(n, m)=1 \text { and } \ell \mid n \cdot m \text { and } n^{\prime}=\operatorname{gcd}(\ell, n) \text { and } m^{\prime}=\operatorname{gcd}(\ell, m)\right) \Longrightarrow \\
\left(n^{\prime} \cdot m^{\prime} \mid \ell \text { and } \ell \mid n^{\prime} \cdot m^{\prime}\right)
\end{gathered}
$$

Calculational proof of EWD1313 in CRAs

Lemma

$a \wedge b=1 \Longrightarrow a \wedge d=a \wedge c$ if $d:=b \cdot c$ is defined, i.e. $d / b=c$ and $b / d=1$

Example

similar example features in Mechanical Mathematicians (Bentkamp \&al.)

$$
\begin{gathered}
\left(\operatorname{gcd}(n, m)=1 \text { and } \ell \mid n \cdot m \text { and } n^{\prime}=\operatorname{gcd}(\ell, n) \text { and } m^{\prime}=\operatorname{gcd}(\ell, m)\right) \Longrightarrow \\
\left(n^{\prime} \cdot m^{\prime} \mid \ell \text { and } \ell \mid n^{\prime} \cdot m^{\prime}\right)
\end{gathered}
$$

is a consequence of a provable CRA statement:

$$
\text { if } a \wedge b=1 \text { and }(a \cdot b) \downarrow \text { and } d \leqslant a \cdot b \text {, then }(d \wedge a) \cdot(d \wedge b) \simeq d
$$

Residual algebra?

Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition o:

Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition o:

Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition o:

Residual systems?

Embedding residual systems with composition in groupoids?

RSC embeds in (typed) involutive monoid of valleys with composition o:

Residual systems?

Embedding residual systems with composition in groupoids?

induces groupoid by quotienting out \bowtie :

Residual systems?

Embedding residual systems with composition in groupoids?

$(\phi, \psi) \bowtie(\chi, \omega)$ if some valley makes both peaks (ϕ, χ) and (ψ, ω) commute:

Residual systems?

Embedding residual systems with composition in groupoids?

$(\phi, \psi) \bowtie(\chi, \omega)$ if some valley makes both peaks (ϕ, χ) and (ψ, ω) commute:

Residual systems?

Embedding residual systems with composition in groupoids?

Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:

Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:

Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:

Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:

Residual systems?

Normalisation trick for braids: reversing (Dehornoy et al.)

if steps can be reversed, normalise via join in reverse system:

[^0]: ${ }^{1}$ Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.

