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Abstract

We consider nominal equational problems of the form ∃W∀Y : P , where P consists of
conjunctions and disjunctions of equations of the form s ≈α t (read: “s is α-equivalent to
t”), freshness constraints of the form a#t (read: “a is fresh for t”) and their negations:
s 6≈α t and a #t, where a is an atom and s, t are nominal terms. When dealing with general
nominal equational problems we face the challenge of properly defining their semantics to
take into account the interaction between negative freshness constraints and the existential
and universal quantifiers. Here we propose a discussion regarding two different approaches:
(i) adopting the usual freshness and equational contraints; (ii) the use of the “new” quantifier
( N) and fixed point equations instead of freshness constraints; in both cases being careful
to obtain the correct meaning.

1 Introduction
Disunification problems have been extended to the nominal setting [2], using a restricted form
of constraints called nominal (disunification) constraints: equations (judgments ∆ ` s ≈α? t)
enriched with disequations, i.e., negated equations of the form s 6≈α? t. In that setting, a
nominal constraint problem P is equivalent to the existentially closed formula:

P := ∃X
((∧

∆i ` si ≈α ti
)
∧
(∧
∇j ` pj 6≈α qj

))
.

This problem is solved in the nominal term-algebra T (Σ,A,X) by constructing suitable
representation to the witnesses for the variables in P [2].

Comon and Lescanne [6] investigated the so-called equational problem, in their words: “an
equational problem is any first-order formula whose only predicate symbol is =”, that is, it has
the form ∃w1, . . . , wn∀y1, . . . , ym : P where P is a system, i.e., an equation s = t, or a disequation
s 6= t, or a disjunction of systems

∨
Pi, or a conjunction of systems

∧
Pi, or a failure ⊥, or

success >. The motivation to study such problems was the applicability in pattern-matching for
functional languages, sufficient completeness for term rewriting systems, dealing with negation
in logic programming languages, etc.
∗The author is supported by the NWO TOP project “Implicit Complexity through Higher Order Rewriting”
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With the development of nominal techniques, including nominal logic [10], nominal unification
and rewriting [7], nominal logic programming [4], and nominal (universal) algebra [8], it is
natural to extend equational problems into the “nominal world” and consider nominal equational
problems. Based on Comon and Lescanne’s work, the expected form of a nominal extension to
the first-order equational problem would be

P ::= ∃W1 . . .Wn∀Y1 . . . Ym : P

with P being a nominal system, i.e., a formula consisting of conjunctions and disjunctions of
freshness, equality constraints, and their negations.

In this paper, we discuss alternative formulations of nominal equational problems taking
into account the kind of constraints used and the model on which they are interpreted. We
also discuss a preliminary rule based strategy to solve such problems. This work is a first step
towards the generalisation of nominal disunification constraint problems (introduced in [2])
which consist of equations and disequations without universally-quantified variables.

2 Background
We assume the reader is familiar with nominal techniques and recall some concepts and notations
that shall be used in the paper; for more details the reader is referred to [7, 11].

Fix countable infinite, pairwise disjoint, sets of atoms A = {a, b, c, . . .} and variables X =
{X,Y, Z, . . .}. Atoms follow the permutative convention, i.e., names a, b, and c run permutatively
over A, therefore they represent different names. As usual, we form nominal terms with a
finite set Σ of term-formers — disjoint from A and X — such that for each f ∈ Σ, a unique
non-negative integer n (the arity of f , written as f : n) is assigned.

A permutation π is a bijection A→ A with finite domain, i.e., the set supp(π) := {a ∈ A |
π(a) 6= a} is finite. Write id for the identity permutation and π ◦ π′ for the composition of π
and π′. The difference set of π and γ is defined by ds(π, γ) = {a ∈ A | π(a) 6= γ(a)}.

Nominal terms are given by the following grammar: s, t := a | π · X | [a]t | f(t1, . . . , tn)
where a is an atom, π ·X is a moderated variable, [a] t is the abstraction of a in the term t, and
f(t1, . . . , tn) is a function application with f ∈ Σ and f : n. We abbreviate a ordered sequence
t1, . . . , tn of terms by t̃.

Example 1. Let Σλ := {lam : 1, app : 2} be a signature for the λ-calculus. Using atoms to repre-
sent λ-calculus variables, λ-expressions are generated by the grammar: e := a |lam([a] e)|app(e, e).
As usual, we write app(s, t) as s t and lam([a] s) as λ [a] s. The following are examples of nominal
terms: (λ [a] a)X and (λ [a] (λ [b] b a) c) d.

The action of a permutation π on a term t is inductively defined by: π ·a = π(a), π ·(π′ ·X) =
(π ◦ π′) ·X, π · ([a]t) = [π(a)](π · t), and π · f(t1, . . . , tn) = f(π · t1, . . . , π · tn). Substitutions,
ranging over σ, γ, τ . . ., are maps (with finite domain) from variables to terms. The action of a
substitution σ on a term t, denoted tσ, is inductively defined by: aσ = a, (π ·X)σ = π · (Xσ),
([a]t)σ = [a](tσ) and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Note that t(σγ) = (tσ)γ.

Equality and Freshness Constraints A nominal equation (disequation) is the symbol >
(⊥) or an expression of the form s ≈α t (s 6≈α t) where s and t are nominal terms. A trivial
equation is either of the form s ≈α s or >. Similarly, a trivial disequation is either s 6≈α s or ⊥.

A finite set of primitive freshness constraints of the form a#X is called a freshness context,
we use ∆,∇, and Γ to denote them. Equality and freshness constraints are defined by the
derivation rules in Figure 1 below.
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(ax)
∇ ` a ≈α a

∇ ` t1 ≈α t′1 · · · ∇ ` tn ≈α t′n (f)
∇ ` f(t1, . . . tn) ≈α f(t′1, . . . , t′n)

∇ ` t ≈α t′ (abs-a)
∇ ` [a]t ≈α [a]t′

∇ ` t ≈α (a a′) · t′ ∇ ` a#t′
(abs-b)

∇ ` [a]t ≈α [a′]t′
a#X ∈ ∇ for all a s.t. π · a 6= π′ · a

(var)
∇ ` π ·X ≈α π′ ·X

(#-ax)
∇ ` a#b

(π−1 · a#X) ∈ ∇
(#-var)

∇ ` a#π ·X
(#-abs-a)

∇ ` a#[a]t

∇ ` a#t
(#-abs-b)

∇ ` a# [b] t
∇ ` a#t1 · · · ∇ ` a#tn (#-f)

∇ ` a#f(t1, . . . tn)

Figure 1: Equality and Freshness Rules

3 (NEP) Nominal Equational Problems
Definition 1. A nominal system P is a formula defined by the following grammar

P, P ′ ::= > | ⊥ | s ≈α t | s 6≈α t | a#t | a #t | P ∧ P ′ | P ∨ P ′.

Although not usual, the negation of freshness — denoted as a #X — means that a is not
fresh for X, that is, there exists an instance t = Xσ of X with at least one free occurrence of a.

Definition 2 (NEP-First Version). A NEP is a formula of the form

P ::= ∃W1 . . .Wn∀Y1 . . . Ym : P

where P is a nominal system and W = {W1, . . . ,Wn}, Y = {Y1, . . . , Ym}, are sets of mutually
distinct variables called respectivley auxiliary unknowns and parameters. fv(P) denotes the set
of free variables occurring in P also called principal unknowns.
Example 2 (Nominal Disunification Constraints). Nominal disunification constraints [2] have
the form P := ∃X〈E || D〉, where E is a finite set of nominal equations in context, i.e.,
E =

⋃
0≤i≤n{∆i ` si ≈α ti} and D is a finite set of nominal disequations in context, D =⋃

0≤j≤m{∇j ` uj 6≈α vj}. This problem is a particular case of NEP: if one takes the judgment
∆ ` s ≈α t as ∆⇒ s ≈α t, or yet as ¬∆ ∨ s ≈α t1, we obtain the following formula:

P := ∃X(
n∧
i=0

(¬[∆i] ∨ si ≈α ti)) ∧ (
m∧
j=0

(¬[∇j ] ∨ uj 6≈α vj)), (1)

where [∆i], [∇j ] are conjunctions of freshness constraints contained in ∆i, ∇j, respectively.

3.1 Solutions of Equational Problems
Let P = ∃W∀Y : P be a NEP. Let A be an algebra that provides an interpretation for the
symbols in the signature. An A-solution for P is a pair 〈Γ, σ〉, consisting of a freshness context
Γ and a substitution σ, such that 〈Γ, σ〉 A-validates the system P (as defined below). We will
assume that A is the nominal algebra of terms T (Σ,A,X), but one could use the ground algebra
T (Σ,A, ∅) or a quotient algebra, say T (Σ,A,X)/ =E for a given equational theory E.

1Similarly, for disequations
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Definition 3. Let C range over equality and freshness constraints and D range over negative
constraints (disequations and negated freshness). We denote by Cσ (resp. Dσ) the constraint
obtained by instantiating the terms in C (resp. D) with the substitution σ and by ¬D the positive
constraint obtained by negating D.

A pair 〈Γ, σ〉 A-validates a system P iff

1. P = >; or 2. P = C; Γ ` Cσ holds in A; or 3. P = D; Γ 6` ¬Dσ in A; or

4. P = P1 ∧ . . . ∧ Pn and 〈Γ, σ〉 A-validates each Pi, 1 ≤ i ≤ n; or

5. P = P1 ∨ . . . ∨ Pm and 〈Γ, σ〉 A-validates at least one Pi, 1 ≤ i ≤ m.

The definition of solution relies on a pair 〈Γ, γ〉 being away from a set of variables.

Definition 4. A pair 〈Γ, γ〉 of a freshness context and a substitution is away from a set of
variables V ⊂ X iff Γ does not contain any a#X with X ∈ V and γ is away from V, i.e., no
variable from V occurs in 〈Γ, γ〉.

Definition 5. A pair 〈Γ, γ〉 is an A-solution of the NEP P = ∃W∀Y : P if, and only if, the
following conditions hold:

1. 〈Γ, γ〉 is away from W ∪ Y and dom(γ) = X = fv(P);

2. there is a pair 〈∆, δ〉 away from Y ∪X (dom(δ) = W ) such that for all pairs 〈Λ, λ〉 away
from W ∪X (dom(λ) = Y ), 〈Γ∆Λ, γδλ〉 A-validates P .

3.2 Nominal Equational Solved Forms
The future goal is to develop a procedure to solve NEP based on applications of simplification
rules, as proposed in [6], that transform problems into simpler ones preserving the set of solutions.
Successive applications of such rules lead to a solved form from which we know how to extract
a solution from. We consider three first-order solved forms: parameterless, unification, and
definition with constraints. Below we extend those notions to the nominal setting.

Definition 6 (Solved Forms).

1. A NEP P is in unification solved form if it is equivalent to a nominal unification problem
of the form 〈Γ, X1 ≈α t1 ∧ . . .∧Xn ≈α tn〉 where all the unknowns X1, . . . , Xn are distinct
and do not occur in the ti’s and Γ is a freshness context;

2. A NEP P is in parameterless solved form if it contains no universal quantifiers.

3. A NEP is a definition with constraints if it is either >,⊥, or a problem of the form
P := ∃X(

∧n
i=0(¬[∆i]∨Xi ≈α ti))∧(

∧m
j=0(¬[∇j ]∨X ′j 6≈α vj)), where variables X1, . . . , Xn

occur only once in the equational part (left conjunction). Variables X ′j is different from vj ,
for 1,≤ j ≤ m. [∆i] and [∇j ] are defined as in Example 2.

It is essential to remark that as in [6] the definition with constraints solved form is equivalent
to the disunification problem introduced in [3], and its extension to the nominal setting is the
disunification constraints problem [2] described in Example 2. We discuss rules in the Appendix.
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3.3 Discussion: a strict equational approach to (NEP)
It is natural to try to define NEP as nominal formulas whose only predicate symbol is ≈α. For that,
we can explore existing results relating freshness and equality constraints. Initially, the freshness
predicate was defined using a quantified fixed point equation, in [11]: a#t iff Na′.(a a′) · t ≈ t.

In another work, a freshness constraint was shown to have a tight relation with a specific
equation between abstracted atoms:

Lemma 1 (Lemma 3.1 in [9]). P ∪ {a#?t} and P ∪ {[a][b]t ≈? [b][b]t} have the same solutions.

The above approaches motivate the following definition for NEP:

Definition 7 (NEP-Second Version). A NEP is a formula of the form

P ::= ∃W∀Y Na : P

where P is a system generated by the grammar P, P ′ ::= > | ⊥ | s ≈α t | s 6≈α t | P ∧P ′ | P ∨P ′,
and W = {W1, . . . ,Wn}, Y = {Y1, . . . , Ym}, and fv(P), as in Definition 2, are the auxiliary
unknowns, parameters and principal unknowns.

As shown in [1], solving equations via freshness constraints is equivalent to following the
approach via fixed point equations when the equational theory is empty. However, when dealing
with equational theories that include commutativity, it seems to be more convenient to use
a purely equational approach. Therefore, we conjecture that this second approach would be
more convenient when dealing quotient algebras, such as T (Σ,A,X)/ =C , or T (Σ,A,X)/ =AC ,
among others.

4 Conclusion
We have considered two approaches to define NEPs as a straightforward nominal version of the
problem introduced in [6, 5], using (negated) freshness constraints in addition to ≈α, or using
purely ≈α as predicate but with the “new” quantifier N. As future work we plan to investigate
which approach is more convenient when defining the rules for simplifying the NEPs in order to
obtain a correct procedure to solve such problems, besides we also intend to investigate NEPs
modulo equational theories.
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A Rule based procedure
In this section we present a preliminary set of simplification rules which will be used in the
algorithm for solving NEP. They are still under investigation and proofs of correctness and
termination are ongoing work.

Intuitively, a set of transformation rules transforms a problem P into a problem P ′ (denoted
as P =⇒ P ′), which are simpler in some sense. Transformation rules may have conditions
(rule controls) in order to be applied. The goal is to reach one of the normal forms defined
above. Different strategies can possible lead to different normal forms. Strategies can also vary
according to the model where the problem is being solved.

The primary control gives priority for application of rules: we split rules into sets Ri using
the index i as a priority stack, i.e., a rule R ∈ Ri can only be applied if no rules from Rj ,
with j < i can be applied. A procedure on a NEP P is a strategy R0, R1, . . . , Rk for application
of rules such that P = P0 =⇒R0 P1 =⇒R2 . . . =⇒Rk

Pk+1, where Ri ∈ Rj , for 0 ≤ i ≤ k
and some 0 ≤ j ≤ 6, satisfying the primary control give above. A problem P is rewritten in
a pattern-matching fashion, i.e, rules give the pattern occurring in the problem. Before the
application of each rule P is reduced to its conjunctive normal form.

R0 : Trivial Rules
(T1) t ≈α t =⇒ > (T2) t 6≈α t =⇒ ⊥ (T3) a ≈α b =⇒ ⊥ (T4) a#b =⇒ >
(T5) a#a =⇒ ⊥ (T6) a #a =⇒ > (T7) a #b =⇒ ⊥

R1: Clash and Occurrence Check Rules
(CL1) f(t̃) ≈α g(ũ) =⇒ ⊥ (CL2)f(t̃) 6≈α g(ũ) =⇒ > where f 6= g
(CL3) s 6≈α t =⇒ > (CL4) s ≈α t =⇒ ⊥ s|ε 6= t|ε and neither is a

moderated variable
(O1) Z ≈α t =⇒ ⊥ (O2) Z 6≈α t =⇒ > Z /∈ vars(t) and Z 6= t

R2: Elimination of parameters and auxiliary unknowns.

(C1) ∀Y , Y : P =⇒ ∀Y : P (C2) ∃W,W : P =⇒ ∃W : P (C3)∃W,W : W ≈α t ∧ P =⇒ ∃W : P

W /∈ vars(P, t) and Y /∈ vars(P ).
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R3: Equality and freshness simplification

(E1) π ·X ≈α γ ·X =⇒ ∧ ds(π, γ)#X
(E2) [a] t ≈α [a]u =⇒ t ≈α u
(E3) [a] t ≈α [b]u =⇒ (b a) · t ≈α u ∧ b#t
(E4) f(t̃) ≈α f(ũ) =⇒ ∧i ti ≈α ui

(F1) a#π ·X =⇒ π−1(a)#X
(F2) a# [a] t =⇒ >
(F3) a# [b] t =⇒ a#t
(F4) a#f(t1, . . . , tn) =⇒ ∧ia#ti

R4: Instantiation Rules
(I1) Z ≈α t ∧ P =⇒ Z ≈α t ∧ P [Z/t], where Z /∈ vars(t) and Z is not a parameter.

(I2) π · Z ≈α t =⇒ Z ≈α π−1 · t (I3) π · Z 6≈α t =⇒ Z 6≈α π−1 · t, t is not a suspension.
R5: Simplification of Parameters

(U1) ∀Y , Y : P ∧ Y 6≈α t =⇒ ⊥
(U2) ∀Y : P ∧ (Y 6≈α t ∨Q) =⇒ ∀Y : P ∧Q[Y/t], if Y /∈ vars(t), Y ∈ Y
(U3) ∀Y , Y : P ∧ Y ≈α t =⇒ ⊥, if Y 6≡ t
(U4) ∀Y : P ∧ (Z1 ≈α t1 ∨ · · · ∨ Zn ≈α tn ∨Q) =⇒ ∀Y : P ∧Q
(U5) ∀Y , Y : P ∧ a#Y =⇒ ⊥
(U6) ∀Y , Y : P ∧ a #Y =⇒ ⊥

Conditions for (U4): (i) Zi is a variable and Zi 6≡ ti; (ii) each equation in the disjunction contains at
least one occurrence of a parameter; (iii) Q does not contain any parameter.

R6: Terms Disunification
(DC) f(t̃) 6≈α f(ũ) =⇒ ∨i ti 6≈α ui
(D1) π ·X 6≈α γ ·X =⇒ ∨i ds(π, γ) #X
(D2) [a] t 6≈α [a]u =⇒ t 6≈α u
(D3) [a] t 6≈α [b]u =⇒ (b a) · t 6≈α u ∨ b #t

(NF1) a #π ·X =⇒ π−1(a) #X
(NF2) a #[a] t =⇒ ⊥
(NF3) a #[b] t =⇒ a #t
(NF4) a #f(t̃) =⇒ ∨ia #ti

R7 : Explosion Rule

∃W∀Y : P =⇒ ∃W1, . . . ,Wn,W∀Y : P ∧X ≈α f(W1, . . . ,Wn)

Rule Conditions: (i) X is a free or existential variable occurring in P , W1, . . . ,Wn are newly chosen
auxiliary variables not occurring anywhere in the problem, and f ∈ Σ; (ii) there exists an equation

X = u (or disequation X 6≈α u) in P such that u is not a variable and contains at least one parameter;
(iii) no other rule can be applied.

The explosion rule creates a new problem for each f ∈ Σ. Given some explosion equation
(disequation), all possible constructions with f ∈ Σ must be considered for completeness’ sake.
Therefore, our procedure will build a finitely branching tree of problems to be solved.

Example 3. Let P be a NEP, using the signature from Example 1, as follows:

P = ∀Y : λ [a]X 6≈α λ [a]λ [a]Y dec=⇒ ∀Y : [a]X 6≈α [a]λ [a]Y abs=⇒ ∀Y : X 6≈α λ [a]Y

Notice that more rules can be applied and the explosion rule results in two parallel problems
P1 = ∃W1∀Y : X 6≈α λ [a]Y ∧X ≈α λW1 and P2 = ∃W1,W2∀Y : X 6≈α [a]Y ∧X = W1W2.
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Successive application of rules gives:

P1
inst=⇒ ∃W1∀Y : λW1 6≈α λ [a]Y ∧X ≈α λW1
dec=⇒ ∃W1∀Y : W1 6≈α [a]Y ∧X ≈α λW1
expl=⇒ ∃W1W2∀Y : W1 6≈α [a]Y ∧X ≈α λW1 ∧W1 ≈α λW2
inst=⇒ ∃W1W2∀Y : λW2 6≈α [a]Y ∧X ≈α λW1 ∧W1 ≈α λW2
dis=⇒ ∃W1W2∀Y : X ≈α λW1 ∧W1 ≈α λW2

pl,inst
∗=⇒ ∃W1W2 : X ≈α λλW2 ∧W1 ≈α λW2.

Similarly, P2
∗=⇒ ∃W1,W2 : X = W1W2. Notice that from this point one reaches a parameter-

less normal form. Solutions to P can be easily obtained by instantiating W2 to any ground term
in P1 and W1,W2 to any term in P2 since X only needs to be instantiated to a term headed by
an application. It is easy to check that this choice indeed generates solutions for P.
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