
Nominal Disunification via Fixed-Point Constraints

(Work in Progress)

Leonardo M. Batista2∗, Maribel Fernández1, Daniele Nantes-Sobrinho2, and
Deivid Vale3

1 King’s College London, London, UK
maribel.fernandez@kcl.ac.uk

2 Universidade de Braśılia, Braśılia, Brazil
L.M.Batista@mat.unb.br, dnantes@unb.br

3 Radboud University Nijmegen, Nijmegen, The Netherlands
deividvale@cs.ru.nl

Abstract

This is a work in progress on solving equations and disequations between nominal terms,
i.e, we are interested in the nominal disunification problem. In the standard nominal syntax,
α-equality (s ≈α t) between two nominal terms s and t is defined using a freshness predicate
(a#t) meaning “atom a is fresh for t”. Recently, an alternative syntax was proposed
using fixed-point constraints instead of freshness constraints. Using fixed-point constraints,
nominal commutative (C) unification is finitary whilst it is not finitary if freshness constraints
are used to represent solutions. With the (future) goal of investigating nominal disunification
problems modulo equational theories, whose solvability via freshness constraints may be
problematic, we exploit this fixed-point approach to solve nominal disunification problems:
we provide an algorithm to compute finite and complete sets of solutions for nominal
disunification problems consisting of equations, disequations and fixed-point constraints.
This is a first step towards solving nominal C-disunification problems.

1 Introduction

This paper is about solving equations (s ≈?
α t) and disequations (s 6≈?

α t) between nomi-
nal terms, that is, it concerns the nominal disunification problem [3], which has the form
〈si ≈?

α ti (1 ≤ i ≤ n), uj 6≈?
α vj (1 ≤ j ≤ m)〉.

Nominal techniques are useful for the treatment of languages involving binders [6]. In this
approach, bindings are implemented through the abstraction of atoms, and atom permutations
are used to implement renamings. For this, freshness constraints (which have the form a#t) and
α-equivalence constraints (which have the form s ≈α t) are considered. Intuitively, a#t means
that the atom a cannot occur free in the term t. This concept was formalised in [7] using the
quantifier new (N) which, in nominal logic, quantifies over new names. Such formalisation is
expressed by the following sentence: a#x⇔ (Na′)(a a′) · x = x, that is, a is fresh in x if, and
only if, for any new atom a′, the permutation (a a′) fixes x. For example, consider the formula
φ = ∀[a]P . In this case, a is an abstracted name, therefore a#φ, which is equivalent to saying
that the renaming of a by a new name a′ still preserves φ, that is, (Na′)(a a′) · φ ≈α φ.

This observation lead to a new axiomatisation of α-equivalence of nominal terms using
fixed-point constraints instead of freshness constraints [2]. Fixed-point constraints have the

form π · t
f
≈α t (read “the permutation π fixes the term t”). For nominal unification problems,

∗Author partially funded by Capes and CNPq.

Nominal Disunification via Fixed-Point Constraints Batista, Fernández, Nantes, Vale

there is a direct correspondence between solutions expressed using freshness constraints and
solutions expressed using fixed-point constraints, but in the presence of commutative theories
the method via fixed point stands out.

Let ≈α,C denote α-equivalence modulo commutativity. Using freshness constraints, the
equation (a b) · X ≈?

α,C X has a unifier 〈a, b#X, Id〉 [9], but this is not the only solution.
Indeed there are infinite solutions {X 7→ a+ b}, {X 7→ (a+ b) + (a+ b)}, {X 7→ f(a+ b)}, . . .
While nominal unification is finitary [9], when equational theories are involved, this property
is lost if solutions are represented using freshness constraints, as shown in [1]. Note that
(a b) · (a+ b) = b+a ≈α,C a+ b, so the permutation (a b) fixes the term a+ b, although the atoms
a and b occur free in a+ b. With the fixed-point approach, the nominal unification algorithm
(modulo commutativity) computes a finite complete set of unifiers [2]. Fixed-point equations
appeared for the first time in [8] in the context of nominal unification with recursive let, but the
authors used the standard notion of freshness to develop their work.

Recently, in [3], a method was proposed to decide the nominal disunification problem, which
is an extension of the first-order disunification problem defined in [4], where the α-equivalence
relation is built using permutations and freshness. The idea is simple: one checks if the set of
equations associated to the disequations, i.e., 〈uj ≈?

α vj(1 ≤ j ≤ m)〉 is satisfiable, if yes (with
solution set S), remove the solutions of 〈si ≈?

α ti(1 ≤ i ≤ n)〉 that are instances of S. Therefore,
the proposed nominal disunification algorithm relies on the existence of a finite representation of
solutions for nominal unification problems. For this reason, the nominal disunification algorithm
proposed in [3], which represents solutions using freshness constraints, cannot be used to solve
nominal C-disunification problems.

In this work we define the nominal disunification problem via fixed-point constraints (Def-
inition 3.1) and we extend to this approach several concepts necessary for the study of its
decidability: a new notion of solution for this problem (Definition 3.4) which depends on the
concept of pair with exceptions (Definition 3.2) as well as its consistency (Definition 3.3). We
prove consistency results (Corollary 3.1) and present the algorithm (Algorithm 2) to obtain
a complete set of solutions (Theorem 3.1). This is a first step towards the development of
extensions of the nominal disunification problem that involve equational theories.

2 Preliminaries

We assume familiarity with nominal techniques and briefly recall basic notions for a fixed-point
approach to nominal syntax. For a detailed treatment, the reader is referred to [2].

Nominal Terms. We fix countable infinite pairwise-disjoint sets of atoms A = {a, b, c, . . .},
variables X = {X,Y, . . .} and a signature Σ, a finite set of function symbols with fixed arity. We
follow Gabbay’s permutative convention: atoms a, b range permutatively over A. A permutation
π is a bijection A→ A such that dom(π) := {a ∈ A | π(a) 6= a} is finite. The identity permutation
is id and π ◦ ρ the composition of π and ρ.

Nominal terms are given by the grammar: s, t := a | π · X | [a]t | f(t1, . . . , tn) where
a is an atom, π · X is a moderated variable, [a]t is the abstraction of a in the term t, and
f(t1, . . . , tn) is a function application with f : n ∈ Σ. We abbreviate an ordered sequence
t1, . . . , tn of terms by t̃. Permutation action on terms is given by: π · a = π(a), π · (π′ ·X) =
(π ◦ π′) ·X, π · ([a]t) = [π(a)](π · t), and π · f(t1, . . . , tn) = f(π · t1, . . . π · tn). Substitutions are
finite mappings from variables to terms. A substitution σ is lifted to a map over terms by:
aσ = a, (π ·X)σ = π · (Xσ), ([a]t)σ = [a](tσ), and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Note that
t(σγ) = (tσ)γ.

2

Nominal Disunification via Fixed-Point Constraints Batista, Fernández, Nantes, Vale

π(a) = a
(fa)

Υ ` π f a

dom(πρ
−1

) ⊆ dom(perm(Υ|X))
(fv)

Υ ` π f ρ ·X

Υ ` π f ti
(ff)

Υ ` π f f(t̃)

(
f
≈α a)

Υ ` a
f
≈α a

Υ, (c1 c2) f Var(t) ` π f (a c1) · t
(fab)

Υ ` π f [a]t

Υ ` ti
f
≈α t′i

(
f
≈α f)

Υ ` f(t̃)
f
≈α f(t̃′)

Υ ` t
f
≈α t′

(
f
≈α [a])

Υ ` [a]t
f
≈α [a]t′

dom((π′)−1 ◦ π) ⊆ dom(perm(Υ|X))
(
f
≈αv)

Υ ` π ·X
f
≈α π′ ·X

Υ ` s
f
≈α (a b) · t Υ, (c1 c2) f Var(t) ` (a c1) f t

(
f
≈α ab)

Υ ` [a]s
f
≈α [b]t

Table 1: Fixed-point and equality rules. c1 and c2 are new atoms.

Term-equality via fixed-point constraints. Following the fixed-point approach [2], we

axiomatise nominal α-equivalence in terms of both a fixed-point f and term-equality
f
≈α

predicates. Intuitively, π f t means that π has no effect on t except by permuting abstracted

names, while s
f
≈α t means that s and t are α-equivalent. For instance, (a b) f [a]a but not

(a b) f f(a). In order to formally define judgement derivations for fixed-point (Υ ` π f t) and

term-equality (Υ ` s
f
≈α t), we need to introduce some notation.

A fixed-point context Υ is a set of primitive fixed-point constraints of the form πfX. Given
two permutations π and ρ, the permutation πρ = ρ ◦ π ◦ ρ−1 denotes the conjugate of π with
respect to ρ. The set Var(Υ) contains all the variables mentioned in the fixed-point context Υ
and perm(Υ|X) := {π | πfX ∈ Υ} as the set of permutations of Υ with respect to X ∈ Var(Υ).
We write πfVar(t) as an abbreviation for {πfX | X ∈ Var(t)}. Derivability for the judgements

Υ ` π f t and Υ ` s
f
≈α t is therefore defined by the derivation rules in Figure 1.

Nominal Unification via Fixed-Point Constraints. A nominal unification problem Pr is

a finite set of fixed-point (πf? t) and equality (s
f
≈

?

α t) constraints. A solution to this problem is
a pair 〈Φ, σ〉 consisting of a context Φ and substitution σ satisfying: (i) Φ ` πf tσ, if πf? t ∈ Pr,

and (ii) Φ ` sσ
f
≈α tσ, if s

f
≈

?

α t ∈ Pr. As usual, the set of solutions U(Pr) for Pr is ordered
via an instantiation ordering: 〈Φ1, σ1〉 ≤ 〈Φ2, σ2〉 iff there exists a substitution δ such that

Φ2 ` Xσ2
f
≈α Xσ1δ and Φ2 ` Φ1δ, for all X ∈ X. In this case, the pair 〈Φ2, σ2〉 is an instance

of the pair 〈Φ1, σ1〉.
In [2] a rule-based algorithm (unifyf) was proposed to compute solutions of these problems,

if any exists. It applies the rules in Table 1 bottom-up plus rules for instantiating variables:

(
f
≈α inst1) Pr] {π ·X

f
≈

?

α t}
[X 7→π−1·t]

=⇒ Pr{X 7→ π−1 · t}, if X /∈ Var(t)

(
f
≈α inst2) Pr] {t

f
≈

?

α π ·X}
[X 7→π−1·t]

=⇒ Pr{X 7→ π−1 · t}, if X /∈ Var(t)

The algorithm was shown to be terminating, sound, and complete.

A matching-in-context problem has the form (Φ ` s) ≈? (Υ ` t), it is a version of the nominal
unification problem in which only one side can be instantiated (here, the right-hand side) and,
in addition, the contexts Φ,Υ have to be satisfied. A solution to a matching problem is a

substitution δ satisfying: Φ ` s
f
≈α tδ,Υδ. Matching-in-context, also called pattern-matching,

was introduced in [5] to define nominal rewriting (using freshness constraints).

3

Nominal Disunification via Fixed-Point Constraints Batista, Fernández, Nantes, Vale

3 Nominal Disunification via Fixed-Point Constraints

This section contains the contributions that extend [3]. Next, we define the nominal disunification
problem via fixed-point constraints.

Definition 3.1. A nominal disunification problem Pf is a pair 〈Pr || Df〉 of the form Pf =

〈 Pr || u1 6
f
≈

?

α v1, . . . , um 6
f
≈

?

α vm〉, where Pr is a nominal unification problem and Df consists of
a finite (possibly empty) set of nominal disequations.

In contrast with unification, where we are interested in solving equations, disunification
problems enrich unification problems with disequations. The intuition is that disequations are
constraints on the way we instantiate solutions of the equations we want to solve. For instance,

Pf = 〈X
f
≈

?

α f(Y) || Y 6
f
≈

?

α a, Y 6
f
≈

?

α b〉 expresses that, while solving the equation X
f
≈

?

α f(Y), a
solution must also satisfy the constraint that no instance of it is allowed to map X to f(a) nor
X to f(b). Therefore, while [X 7→ f(c)], which is a grounding instance of the mgu [X 7→ f(Y)],
validates the constraints imposed by Pf, the instance [X 7→ f(a)] does not.

The next example illustrates this principle when fixed-point constraints are taken into
account.

Example 3.1. Consider Pf = 〈X
f
≈

?

α (a b) · Y || [a]X 6
f
≈

?

α [b]Y 〉. The substitution [X 7→ (a b) · Y]

solves the equational part. In order to get the set of constraints imposed by [a]X 6
f
≈

?

α [b]Y , we solve

the equation [a]X 6
f
≈α [b]X associated to it. The equation associated to the disequation is [a]X

f
≈

?

α

[b]Y . Using the rule (
f
≈αab) in Table 1, the fact that the system is syntax-directed, and satisfies

the inversion property it follows that [a]X
f
≈

?

α [b]Y iff {X
f
≈

?

α (a b) · Y, (a c1) f? Y, (c1 c2) f? Y },
where c1, c2 are new names.

The solutions for Pf are all the instances of the pair 〈Φ, σ〉 = 〈∅, [X 7→ (a b) · Y]〉 that do
not satisfy (a c1) f? Y, (c1 c2) f? Y .

The example above shows that we need the information of new names that are generated
when we solve equations associated to disequations.

Definition 3.2. Let Pf be a disunification problem. A pair with exceptions for Pf, denoted as
〈Φ, σ〉 −Θ, consists of a pair 〈Φ, σ〉 and an indexed family Θ of the form {〈∇1

l]∇2
l , θl〉 | l ∈ I},

where ∇2
l is a (possibly empty) set of primitive fixed-point constraints involving new names, i.e.,

names not occurring anywhere in Pf.

The notion of pair with exceptions is key for the representation of solutions of a disunification
problem: it will impose restrictions (the exceptions) on how these solutions can be instantiated.
Intuitively, Θ consists of pairs of solutions of the equations associated to the disequations in Pf.

Definition 3.3. Let Pf be a disunification problem. Let c be a set of new atoms and X be the

set of variables of Pf. We denote by Φc,X the extension of Φ with a set of primitive constraints
(c1 c2) fX for every pair c1, c2 in c and X ∈ X. We say that

(i) 〈Φ, σ〉 is an instance of a family Θ = {〈∇1
l]∇2

l , θl〉 | l ∈ I} iff every instance of 〈Φc,X , σ〉,
is an instance of some 〈∇1

l] ∇2
l , θl〉 ∈ Θ, where ∇2

l consists of primitive fixed-point
constraints involving new names, c are all the new names occurring in ∇2

l for any l.

(ii) 〈∆, λ〉 is an instance of 〈Φ, σ〉 −Θ iff 〈∆, λ〉 is an instance of 〈Φ, σ〉 but not of Θ.

4

Nominal Disunification via Fixed-Point Constraints Batista, Fernández, Nantes, Vale

(iii) A pair with exceptions 〈Φ, σ〉 −Θ is consistent iff it has at least one instance.

Lemma 3.1 (Inconsistency Lemma). A pair with exceptions 〈Φ, σ〉 −Θ is inconsistent if and
only if 〈Φ, σ〉 is an instance of Θ.

The next result is the basis for an algorithm (Algorithm 1) to test the consistency of a pair
with exceptions 〈Φ, σ〉 −Θ for Pf. It suffices to solve matching-in-context problems of the form

(Φc,X ` Xσ) ≈? (∇1
l]∇2

l ` Xθl) for every variable X in Pf, Differently from [3], here we check

the domain of the permutations in Φc,X |X and in an instance1 〈(∇1
l]∇2

l)δ〉nf|X for X in Pf.

Corollary 3.1. Let 〈Φ, σ〉 − Θ be a pair with exceptions for Pf. If there is some
〈∇1

l] ∇2
l , θl〉 ∈ Θ such that there exists a solution δ for the matching-in-context problems

(Φc,X ` Xσ) ≈? (∇1
l] ∇2

l ` Xθl), for all X ∈ Pf, then 〈Φ, σ〉 −Θ is inconsistent. Moreover,

dom(perm(〈(∇1
l]∇2

l)δ〉nf|X)) ⊆ dom(perm((Φc,X |X)) for each X.

The corollary provides a method for checking for consistency of a pair with exceptions for a
problem Pf:

Algorithm 1: Consistency Test

input: a finite pair with exceptions 〈Φ, σ〉 −Θ for Pf.
output: true if the input is consistent, false, otherwise.
for 〈∇1

l]∇2
l , θl〉 ∈ Θ do

if δ = matching(Φc,X , X1σ ≈? X1θl, · · · , Xnσ ≈? Xnθl)
then

if dom(Perm(〈(∇1
l]∇2

l)δ〉nf|X)) ⊆ dom(Perm(Φc,X |X)), for all X ∈ Pf

then
return false and stop

end if
end if

end for
return true

A solution for a disunification problem Pf will be a pair 〈Φ, σ〉 that satisfies the conjunction
of constraints in Ef, and the conjunction of the constraints in Df. Formally,

Definition 3.4. Let Pf = 〈Pr || p1 6
f
≈

?

α q1, . . . , pm 6
f
≈

?

α qm}〉 be a nominal disunification problem.
A solution to Pf is a pair 〈∆, λ〉 of a context ∆ and a substitution λ satisfying the following
conditions:

1. 〈∆, λ〉 is a solution for Pr of Pf;

2. 〈∆, λ〉 satisfies the disequational part Df of Pf, that is, for all grounding substitution δ:

∆ 6` (p1λδ
f
≈α q1λδ ∨ . . . ∨ pnλδ

f
≈α qnλδ).

Definition 3.5. We call a set S of pairs with exceptions for Pf a complete representation of
the solutions of the constraint problem Pf iff S satisfies the following conditions:

1. if 〈Φ, σ〉 −Θ ≤ 〈∆, λ〉 for some 〈Φ, σ〉 −Θ in S, then 〈∆, λ〉 solves Pf;

2. if 〈∆, λ〉 solves Pf, then it is an instance of some 〈Φ, σ〉 −Θ in S;

1The normal form of the instance (∇1
l]∇

2
l)δ of the context ∇1

l]∇
2
l w.r.t. the rules in unifyf

5

Nominal Disunification via Fixed-Point Constraints Batista, Fernández, Nantes, Vale

3. 〈Φ, σ〉 −Θ is consistent for all 〈Φ, σ〉 −Θ in S.

Theorem 3.1 (Representation Theorem). Let Pf = 〈Pr || Df〉 be a nominal disunification
problem. Define the family

Θ :=
⋃

pi 6
f
≈

?

αqi∈Df

U(pi
f
≈

?

α qi).

Then the set S = {〈Φ, σ〉 −Θ | 〈Φ, σ〉 ∈ U(Pr) and Θ 6≤ 〈Φ, σ〉} is a complete representation of
solutions for the problem Pf.

Algorithm 2: Construction of a complete representation of solutions

input: A problem Pf = 〈Pr || Df〉.
output: A finite set S of pair pairs with exceptions (possibly empty).
let 〈Φ, σ〉 := unifyf(Pr)
let

Θ :=
⋃

pi 6
f
≈

?

αqi∈Df

{〈∇1
i]∇2

i , θi〉 = unifyf(pi
f
≈

?

α qi)}

if consistent(〈Φ, σ〉 −Θ) then
return 〈Φ, σ〉 −Θ
else return ∅
end if

Example 3.2. Let P ′f = 〈 {(a c1) f? Y, (c1 c2) f? Y,X
f
≈

?

α (a b) · Y }︸ ︷︷ ︸
Pr

|| [a]X 6
f
≈

?

α [b]Y 〉. Applying

Algorithm 2 one has:

• unifyf(Pr) = 〈{(a c1) f Y, (c1 c2) f Y }, [X 7→ (a b) · Y]〉 = 〈Φ, σ〉, and

• Θ = {〈{(a c′1) f Y, (c′1 c
′
2) f Y }︸ ︷︷ ︸

∇

, [X 7→ (a b) · Y]︸ ︷︷ ︸
θ

〉} = unifyf([a]X
f
≈

?

α [b]Y) where c′1 and c′2 are

new names.

Inconsistency of 〈Φ, σ〉 −Θ follows from Algorithm 1:

• Φc,X = Φc
′
1,c
′
2,X,Y = Φ ∪ {(c′1 c′2) fX, (c′1 c

′
2) f Y }.

• id = matching(Φc
′
1,c
′
2,X,Y , Xσ ≈? Xθ, Y σ ≈? Y θ) and

• dom(perm(〈∇id〉nf|Y)) = {c′1, c′2, a} ⊆ dom(perm(Φc
′
1,c
′
2,X,Y)|Y) = {a, c1, c2, c′1, c′2}.

• dom(perm(〈∇id〉nf|X)) = ∅ ⊆ dom(perm(Φc
′
1,c
′
2,X,Y)|X) = {c′1, c′2}.

Therefore, S = ∅ and there is no solution for Pf.

4 Conclusion and Future Work

This work used the fixed-point relation, intrinsic to the definition of the freshness relation,
in order to extend the syntax concepts already defined in the usual nominal disunification.
The fixed-point approach proved to be useful for dealing with equational theories that involve
commutativity. For this reason, in future work, we intend to finalise the semantic analysis of our
extension and take advantage of its finite representation of solutions to investigate disunification
problems involving equational theories.

6

Nominal Disunification via Fixed-Point Constraints Batista, Fernández, Nantes, Vale

References

[1] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, and Daniele Nantes-
Sobrinho. On solving nominal fixpoint equations. In Front. of Combining Systems - 11th Int.
Symp., FroCoS 2017, Proc., volume 10483 of LNCS, pages 209–226. Springer, 2017. doi:10.1007/

978-3-319-66167-4_12.

[2] Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho. On nominal syntax and
permutation fixed points. LMCS, 16(1), 2020. doi:10.23638/LMCS-16(1:19)2020.

[3] Mauricio Ayala-Rincón, Maribel Fernández, Daniele Nantes-Sobrinho, and Deivid Vale. On solving
nominal disunification constraints. In Proc. LSFA 2019. doi:10.1016/j.entcs.2020.02.002.

[4] Wray L. Buntine and Hans-Jürgen Bürckert. On solving equations and disequations. J. ACM,
41(4):591–629, 1994. doi:10.1145/179812.179813.

[5] Maribel Fernández and Murdoch Gabbay. Nominal rewriting. Inf. Comput., 205(6):917–965, 2007.
doi:10.1016/j.ic.2006.12.002.

[6] Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects Comput., 13(3-5):341–363, 2002. doi:10.1007/s001650200016.

[7] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University
Press, 2013.

[8] Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, and Mateu Villaret. Nominal unification of
higher order expressions with recursive let. In Manuel V. Hermenegildo and Pedro López-Garćıa,
editors, Logic-Based Program Synthesis and Transformation - 26th International Symposium, LOP-
STR 2016, Edinburgh, UK, September 6-8, 2016, Revised Selected Papers, volume 10184 of Lecture
Notes in Computer Science, pages 328–344. Springer, 2016. doi:10.1007/978-3-319-63139-4_19.

[9] Christian Urban, Andrew M. Pitts, and Murdoch Gabbay. Nominal unification. Theor. Comput.
Sci., 323(1-3):473–497, 2004. doi:10.1016/j.tcs.2004.06.016.

7

https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.23638/LMCS-16(1:19)2020
https://doi.org/10.1016/j.entcs.2020.02.002
https://doi.org/10.1145/179812.179813
https://doi.org/10.1016/j.ic.2006.12.002
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/978-3-319-63139-4_19
https://doi.org/10.1016/j.tcs.2004.06.016

	Introduction
	Preliminaries
	Nominal Disunification via Fixed-Point Constraints
	Conclusion and Future Work

